İçeriğe atla

Googolplex

Googolplex,  sayısına verilen isimdir.

Googolplex kitap formunda yazılmıştır.

Bu sayı;

  •  (üs alma yukarıdan aşağıya doğru hesaplandığı için),
  • googol = 10100 olmak üzere, ,
  • 1010 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

ya da

  • 1'den sonra googol (yani, 10100) kadar 0 yazarak da gösterilebilir.

Googol terimi, 1938'de, Amerikalı matematikçi Edward Kasner ile yeğenleri Edwin ve Milton Sirotta tarafından ortaya atılmış; sonrasında Milton, googolplex terimini "1'den sonra yoruluncaya kadar sıfır yazmak" olarak ifade etmiştir. Bunun üzerine Kasner, "farklı insanlar farklı zamanlarda yorulurlar ve dayanıklılığı daha fazla diye de Carnera'nın Dr. Einstein'dan daha iyi bir matematikçi olması kabul edilemez" diyerek, bu sayılar için daha resmi bir tanım benimsemiştir.[1]

Googolplex sayısının büyüklüğü

Bir googol, bilinen evrenin 1072 ile 1087 arasında olduğu tahmin edilen temel parçacık sayısından daha büyüktür. Bir googolplex de "biri takip eden googol kadar sıfır"dan oluştuğu için, evrende bilinen tüm madde kâğıt ve mürekkebe ya da sabit diske dönüşse bile, bu sayıyı ondalık sistemle yazmak ya da kaydetmek mümkün olmayacaktır.

Diğer bir yönden, googolplex sayısının okunamayacak 1 puntoluk karakterlerle basıldığını varsayalım. Her birinin genişliği 0,3514598 mm olan Tex tipi 1 puntoluk karakterlerle googolplex sayısını yazmak için yaklaşık 3,5 x 1096 metreye gereksinim olacaktır. Bilinen evren çapının 7,4 x 1026 metre olduğu tahmin edilmektedir ki, bu sayıyı yazmak için gerek duyulan uzunluk, bilinen evren çapının 4,7 x 1069 katı kadardır. Böyle bir sayıyı yazmak için harcanacak zaman da bu işi anlamsız kılar: bir kişinin iki saniyede bir rakam yazabildiği varsayılırsa, googolplex sayısını yazmak bilinen evren yaşının 1,1 x 1082 katı kadar zaman alacaktır.

Dolayısıyla, fiziksel dünyada googolplex ile yakından kıyaslanabilecek sayı örnekleri vermek zordur. Saf bir kuantum durumunun kütle çekimsel olarak bir kara deliğe çökmesi ve o kara deliğin de karma bir termal radyasyon durumuna tamamen buharlaşması sonucunda evrenimizden bilgi kaybolabileceği önermesi, 1976'da Stephen Hawking tarafından yapılmıştır. Bu önerme ile ilgili olarak kuantum durumlarını ve kara delikleri analiz eden fizikçi Don Page, güneşin kütlesine sahip kara deliklerde bilginin kaybolup kaybolmadığını deneysel olarak belirleyebilmek üzerine şöyle yazmıştır: "karadelik buharlaştıktan sonra geriye kalan son yoğunluk matrisini kabaca belirleyebilmek için, 'den fazla ölçüm gerekecektir" [1]. Yine Page, başka bir makalesinde, kütlesi Andromeda Galaksisine eşdeğer bir kara delikteki durumların sayısının bir googolplex kadar olacağını yazmıştır [2]6 Kasım 2006 tarihinde Wayback Machine sitesinde arşivlendi..

Soyut matematikte ise bir googolplex, tetrasyon, Knuth yukarı ok gösterimi, Steinhaus-Moser gösterimi ya da Conway zincirleme ok gösterimi gibi gösterimlerle özel olarak tanımlanmış olağanüstü büyük sayılar kadar büyük değildir. Bahsi geçen yöntemlerle daha az sembol kullanılarak daha büyük sayılar yazılabilir. Örneğin,

99999 sayısı çok daha büyüktür ve

tetrasyon kullanarak   ve yukarı ok gösterimi kullanarak da   diye ifade edilebilir.

Bazı sayı dizileri çok çabuk büyürler. Örneğin, Ackermann sayılarının ilk ikisi 1 ve 4'tür ama üçüncüsü 'tür ki, bu da 7 trilyondan fazla 3 içeren bir üs kulesidir [3]27 Nisan 2014 tarihinde Wayback Machine sitesinde arşivlendi..

Çok daha büyük bir sayı ise, genellikle "bugüne dek bir matematiksel kanıt için kullanılagelmiş en büyük sayı" olarak tanımlanan Graham sayısıdır. Bu sayıyı ifade etmek için çok özel gösterim biçimleri kullanılır çünkü üstel ifadesindeki rakamların sayısı bile bilinen evrendeki temel parçacıkların sayısından fazladır.

Bir googolplex iç içe geçmiş üslü gösterim sayesinde kısaca yazılabilen devasa bir sayıdır. Tetrasyon gibi diğer yöntemler daha büyük sayıları daha kısaca ifade eder. Doğal olarak akla gelen soru şudur: En büyük sayıyı ifade etmek için en az sembolü kullanan prosedür nedir? Bir Turing makinesi bu prosedür kavramını formalize eder ve bir "busy beaver" olası en büyük sayıyı yazan n büyüklüğünde bir Turing makinesi olsun [4] 2 Eylül 2006 tarihinde Wayback Machine sitesinde arşivlendi.. n ne kadar büyük olursa "busy beaver"da o kadar karmaşık olur dolayısıyla da o kadar da büyük sayı yazabilir. n=1, 2, 3, 4 ve 5 için yazılabilen sayılar o kadar da büyük değildir ancak 2006'da yapılan araştırmalar n=6 için "busy beaver"ın en az kadar büyük bir sayı yazabileceğini göstermiştir. [5]. Yedinci "busy beaver"ın bir googolplex yazıp yazamayacağı hâlâ cevapsız kalmış bir sorudur.

Popüler kültürde googolplex

  • Googolplex, "Simpson ailesi" adlı çizgi dizideki hayali Springfield şehrinin çok salonlu sinemasının adıdır.
  • Google ana merkezlerine "Googleplex" adını vermiştir.
  • Geleceğe Dönüş Bölüm III'te, Dr. Emmett Brown kız arkadaşı Clara Clayton'ı tanımlamak için bu sayıyı kullanılmıştır:
Clara is one in a million. One in a billion. One in a googolplex! (Clara milyonda birdir. Milyarda birdir. Googolplexte birdir!)
  • Clutch grubu 2002 yılında Live at the Googolplex isimli bir albüm çıkarmıştır.
  • Douglas Adams'ın "Otostopçunun Galaksi Rehberi" adlı kitabındaki "Googolplex Star Thinker", "beş haftalık Dangrabad Beta kum fırtınası boyunca her bir toz zerreciğinin yörüngesini hesaplayabilen" bir süperbilgisayardır.

Ayrıca bakınız

Kaynakça

  1. ^ Kasner, Edward (2001). Matematik ve Düş Gücü. Mineola, NY: Dover Publications. 

Dış bağlantılar

İngilizce

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Doğal sayılar</span> sayma sayıları kümesine 0ın eklenmesiyle oluşan sayılar kümesi

Doğal sayılar, şeklinde sıralanan tam sayılardır ve kimi tanımlamalara göre 0 sayısı da bu kümeye dâhil edilebilir. Aralarında standart ISO 80000-2'nin de bulunduğu bazı tanımlar doğal sayıları 0 ile başlatır ve bu durum negatif olmayan tam sayılar için 0, 1, 2, 3, ... şeklinde bir karşılık bulurken, bazı tanımlamalar 1 ile başlamakta ve bu da pozitif tam sayılar için 1, 2, 3, ... şeklinde bir eşlenik oluşturur. Doğal sayıları sıfır olmadan ele alan metinlerde, sıfırın da dahil edildiği doğal sayılar bazen tam sayılar olarak adlandırılırken diğer bazı metinlerde bu terim, negatif tam sayılar da dahil olmak üzere tam sayılar için kullanılmaktadır. Özellikle ilkokul seviyesindeki eğitimde, doğal sayılar, negatif tam sayıları ve sıfırı dışlamak ve saymanın ayrık yapısını, gerçek sayıların bir karakteristiği olan ölçümün sürekliliğiyle karşıtlık oluşturmak amacıyla sayma sayıları olarak adlandırılabilir.

<span class="mw-page-title-main">Aritmetik</span> temel matematik dalı

Aritmetik; matematiğin sayılar arasındaki ilişkiler ile sayıların problem çözmede kullanımı ile ilgilenen dalı. Aritmetik kavramı ile genellikle sayılar teorisi, ölçme ve hesaplama kastedilir. Bununla birlikte bazı matematikçiler daha karmaşık çeşitli işlemleri de aritmetik başlığı altında değerlendirirler.

<span class="mw-page-title-main">Büyük O gösterimi</span>

Büyük O (Big-Oh) gösterimi matematiksel bir gösterim olup işlevlerin (fonksiyonların) asimptotik davranışlarını tarif etmek için kullanılır. Bir işlevin büyümesinin asimptotik üst sınırını daha basit başka bir işlev cinsinden tanımlanması demektir. İki temel uygulama alanı vardır: matematik alanında genellikle kırpılmış bir sonsuz serinin kalan terimini karakterize etmek için kullanılır; bilgisayar bilimlerinde ise algoritmaların bilgi işlemsel karmaşıklığının çözümlemesi için kullanılır.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

Bilimsel gösterim, çok büyük ve çok küçük sayıları göstermek için kullanılan bir standarttır.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

Kayan noktalı sayılar gerçel sayıların bilgisayar ortamındaki gösterim şekillerinden biridir. Gerçek dünyada sayılar sonsuza kadar giderken, bilgisayar ortamında bilgisayar donanımının getirdiği sınırlamalardan dolayı bütün sayıların gösterilmesi mümkün değildir. Bununla birlikte gerçekte sonsuza kadar giden birtakım değerler bilgisayar ortamında ortamın kapasitesine bağlı olarak yaklaşık değerlerle temsil edilirler. Bu sınırlamaların etkisini en aza indiren, sayıların maksimum miktarda ve gerçeğe en yakın şekilde temsilini sağlayan sisteme "Kayan-Noktalı Sayılar" sistemi denir. Kayan-Noktalı sayılar sistemi, bir sayı ile 10'un herhangi bir kuvvetinin çarpımı şeklinde sıklıkla kullanılan bilimsel gösterime oldukça benzeyen bir notasyona sahiptir ve en sık kullanılan IEEE 754 standardına göre şekillendirilmiştir.

<span class="mw-page-title-main">Güvercin yuvası ilkesi</span>

Matematikte Güvercin Yuvası İlkesi ya da çekmece ilkesi ya da Dirichlet kutu (çekmece) ilkesi, çok basit bir ilke olmasına karşın bu ilkeyi kullanarak ispatlanabilecek ilişkiler çok ilginç olabilir. Bu ilke tam olarak şunu der: N ve k pozitif tamsayılar ve N > k olmak üzere N nesne k kutuya yerleştirildiğinde öyle bir kutu vardır ki o kutuda birden çok nesne bulunmak zorundadır. Bu doğru olmasaydı, yani her kutuda en fazla birer nesne olsaydı, k kutuda en fazla k nesne olabilecekti.

Googol, matematikteki büyük sayılardan biridir ve 10100'e eşittir. Başka bir deyişle 1 googol, 1 rakamına yüz sıfır ekleyerek yazılır. Bu terim Amerikalı matematikçi Edward Kasner'ın yeğeni Milton Sirotta (1929–1980) tarafından 1938 yılında kullanılmaya başlanmıştır. Milton bu sırada dokuz yaşındaydı. Kasner bu kavramı Matematik ve Hayal Gücü adlı kitabında da ele almıştır.

Büyük sayılar, gündelik yaşamda normalde kullanılmayan büyük sayıları ifade eder. Terim genellikle büyük pozitif tam sayıları veya daha genel anlamda büyük pozitif reel sayıları belirtir. Fakat, diğer anlamlar için de kullanılabilir.

Bu madde büyük sayıların adlarının kullanımı ve türetimini, kısaltmalarıyla birlikte listeler.

Matematikte Steinhaus–Moser gösterimi, aşırı derecede büyük sayıları ifade etme anlamına gelir. Steinhaus çokgen gösteriminin genişlemesidir.

Knuth yukarı ok gösterimi, matematikte, çok büyük tam sayıların gösterim yöntemidir. 1976'da Donald Knuth tarafından geliştirildi. Ackermann işlevi ve özel hiperişlem serisi ile oldukça bağlantılıdır. Çarpmanın, tekrarlı hiperişlem olarak tekrarlı toplama ve üs alma gibi görülebilmesi fikrine dayanır. Bu durumu devam ettirme tekrarlı üssü (tetrasyonu) ve çoğunlukla Knuth ok gösterimi kullanılarak ifade edilen aşırı seri üretiminin geri kalanını meydana getirir.

Conway dizisi ok gösterimi, çok büyük sayıları ifade etmek için matematikçi John Horton Conway tarafından oluşturuldu. Pozitif tam sayılar serisini basitçe sağa doğru oklarla ayırarak gösterir. Örneğin, 2→3→4→5→6.

Graham sayısı, adını Ronald Graham'dan alan, Ramsey teorisindeki problemlerin çözümü için üst sınır getiren büyük bir sayıdır.

<span class="mw-page-title-main">Tetrasyon</span>

Matematikte, tetrasyon, üslü sayıdan sonra gelen ilk aşırı işlecin tekrarlı üssüdür. Tetrasyonun İngilizce karşılığı olan tetration kelimesi ilk kez matematikçi Reuben Louis Goodstein tarafından, tetra- (dört) ve iteration (tekrar)dan türetilerek kullanılmaya başlandı. Tetrasyon çok büyük sayıların gösterimi için kullanıldı. Fakat birkaç pratik uygulaması vardır. Bu yüzden sadece saf matematik incelenir. Burada aşırı işlecin ilk dört örneğin gösteriliyor. Tekrasyon dördüncüsüdür:

  1. toplama
    Normal bilinen toplama işlemi.
  2. çarpma
    genellikle temel işlemlerden birini ifade eder. Fakat doğal sayılar gibi özel durumlar için kendine n kere eklenen a olabilir.
  3. üs alma
    a nın kendisi ile n kere çarpılması.
  4. tetrasyon
    a 'nın kendisiyle n kere üssünün alınması.

Hiperişlem, matematik'te aritmetik işlemlerin sonsuz dizisidir. Ardılın birli işlemi, ardından toplama, çarpma ve üs almanın iki işlemiyle devam eden ve ardından ikili işlemlerin ötesine geçerek serilerle ilerleyen bir işlemdir. Üstelden sonraki işlemler için bu dizinin n. elemanı Reuben Goodstein tarafından adlandırıldı. n Yunan önekinden sonra -syon son eki kullanılarak elde edilir ve Knuth yukarı ok gösterimindeki n-2 okları kullanılarak yazılabilir. Her hiperişlem, önceki terimlerin yinelemesi olarak tanımlanır. Ackermann işlevi, Knuth yukarı ok gösterimini kullanarak şöyle yinelenebilir:

<span class="mw-page-title-main">Edward Kasner</span> Amerikalı matematikçi (1878 – 1955)

Edward Kasner, Columbia Üniversitesi Matematik Bölümü'ne Matematik Öğretmeni olarak atanan tanınmış bir Amerikalı matematikçiydi. Kasner, Columbia Üniversitesi'nde bilimlerde fakülte pozisyonuna atanan ilk Yahudi idi. Daha sonra üniversitede 1906'da yardımcı profesör ve 1910'da profesör oldu. Diferansiyel geometri onun ana çalışma alanıydı. "Googol" terimini sunmanın yanı sıra, Kasner metriği ve Kasner poligonu ile de tanınır.

Süperfaktöriyel, sembolü ‼ olan özel tanımlı bir matematiksel fonksiyondur. Matematikte, süperfaktöriyelin birden fazla tanımı vardır.