İçeriğe atla

Golgi aygıtı

Bir akciğer hücresindeki golgi aygıtı
Endoplazmik retikulumdan (turuncu) golgi aygıtına (pembe) salgı işlemi diyagramı. 1. Çekirdek zarı; 2. Çekirdek poru; 3. Granüllü endoplazmik retikulum (GER); 4. Düz endoplazmik retikulum (DER); 5. GER'e bağlanmış ribozom; 6. Makromoleküller; 7. Taşıyıcı veziküller; 8. Golgi aygıtı; 9. Golgi aygıtının cis yüzü; 10. Golgi aygıtının trans yüzü; 11. Golginin sisternaları

Golgi aygıtı (ayrıca Golgi cisimciği veya Golgi kompleksi), çoğu ökaryotik hücrede bulunan bir organeldir.[1] 1897'de, Golgi aygıtı isminin kaynağı olan, İtalyan tabip Camillo Golgi tarafından keşfedilmiştir.[2]

Proteinler sentezlenip hedef noktalarına gitmeden önce golgi tarafından işlenir ve paketlenir; bu özellikle sekresyon için işlenen proteinlerde önemidir. Golgi aygıtı hücresel endomembran sisteminin bir bölümünü oluşturur.

Keşfi

Oldukça büyük boyutundan dolayı, golgi aygıtı keşfedilip ayrıntılarıyla incelenen ilk organellerden biridir. Bu aygıt ilk defa 1897 yılında İtalyan tabip Camillo Golgi tarafından sinir sistemi üzerinde yapılan bir inceleme sonucu keşfedilmiştir.[2] Bu organeli kendi mikroskobunda ilk keşfinde yapıyı apparato reticolare interno (Türkçe: dahili ağsı aygıt) olarak adlandırdı. Bu yapının adı, keşfinden 1 yıl sonra Camillo Golgi'nin soyadıyla yeniden adlandırıldı. Ancak bazıları ilk başlarda keşiften şüphe duydu, bu yapının aslında sadece Golgi'nin gözlem tekniğinden kaynaklanan bir optik yanılsama olduğu iddia edildi. 20. yüzyılda modern mikroskopların gelişmesiyle keşif doğrulandı.[3]

Yapısı

Hem bitkisel hem hayvansal hücrelerde bulunan golgi, sisterna olarak bilinen kıvrımlı zar kümelerinden oluşur. Özellikle bitki hücrelerinde bulunan diktozom adlı (Yunanca, dictyon: ağ + soma: cisim[4]) özgün bir küme bulunur.[5] Bir memeli hücresinde genellikle 40'tan 100'e kadar küme gözlenir.[6] Bir kümede genellikle dört veya sekiz sisterna bulunur.; ancak bazı Protistalarda sisternaların altmışa kadar çıktığı gözlenmiştir.[3] Her sisterna, onu boydan boya geçen kargo proteinlerine yardım eden veya onlara yardım eden özel golgi enzimlerini içeren yassı, etrafı zarlarla çevrili disklerden oluşur.[7]

Sisterna kümesinin dört işlevsel bölgesi vardır: cisim golgi ağı, medial golgi, endo golgi ve trans golgi ağı. Endoplazmik retikulumden veziküler tübüler küme aracılığıyla gelen veziküller, ağ örgüsüyle kaynaşır ve daha sonra paketlenip hedef noktalara gönderildikleri trans golgi ağı boyunca işlenir. Her bölge, bulundukları yere göre içerikleri seçici olarak modifiye eden farklı enzimler içerir.[8] Sisternalar aynı zamanda kendi onarımları için gereken yapısal proteinler taşır.[9]

Görevleri

Hücreler büyük miktarlarda değişik makromolekül sentezler. Golgi aygıtı bu makromoleküllerin hücre sekresyonu[10] (Ekzositoz) veya hücre içi kullanım[11] için paketlenmesinde, türlerine göre ayrılmasında ve modifiye edilmesinde bütünleyici bir göreve sahiptir. Golgi aygıtı öncelikli olarak granüllü endoplazmik retikulumdan gelen proteinleri modifiye eder ve aynı zamanda lipitlerin hücre içinde taşınmasını ve lizozomun oluşumunda görev alır.[11] Bu bakımdan postaneye benzetilebilir; daha sonradan hücrenin çeşitli yerlerine yollayacağı materyalleri paketler ve etiketler.

Sisternada bulunan enzimler karbonhidrat (Glikozilasyon)[12] veya fosfat (Fosforilasyon) ilavesi ile proteinleri modifiye edebilir. Bunu yapabilmek için sitozolden nükleotid şekerler gibi materyalleri içe aktarır. Bu modifikasyonlar aynı zamanda proteinin son varış noktasını belirleyecek olan sinyal sekansını oluşturabilir. Örneğin golgi aygıtı, lizozomlara gidecek olan proteinleri mannoz-6-fosfat ile etiketler

Mitoz esnasında Golgi aygıtı (cisimciği)

Hayvan hücrelerinde, mitozun başlangıcından sonra ayrışır ve kaybolur. Mitozun telofaz evresi esnasında tekrar ortaya çıkar; ancak bunun nasıl olduğu konusunda hala kesin bir kanıya varılamamıştır.[13]

Yanıltıcı bir şekilde bitkilerin veya mayaların hücrelerindeki golgi aygıtlarının hücre döngüsü boyunca bozulmadan durduğu gözlenmiştir. Bu farklılığın nedeni bilinmemekle birlikte kısmen golgi proteinlerinin farkından kaynaklandığı düşünülmektedir.

Ayrıca bakınız

Kaynakça

  1. ^ Pavelk M, Mironov AA (2008). The Golgi Apparatus: State of the art 110 years after Camillo Golgi's discovery (İngilizce). Berlin: Springer. ISBN 3-211-76309-0. 
  2. ^ a b Fabene PF, Bentivoglio M (Ekim 1998). "1898–1998: Camillo Golgi and "the Golgi": one hundred years of terminological clones". Brain Res. Bull. 47 (3). ss. 195-8. doi:10.1016/S0361-9230(98)00079-3. PMID 9865849. 
  3. ^ a b Davidson MW (13 Aralık 2004). "The Golgi Apparatus". Molecular Expressions. Florida State University. 25 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Eylül 2010. 
  4. ^ "Diktozom". Dictionary.com. 9 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Eylül 2010. 
  5. ^ Wolfe SA (1993). Molecular and Cellular Biology (İngilizce). Belmont, CA: Wadsworth Pub. Co. s. 828. ISBN 0-534-12408-9. 
  6. ^ Duran JM, Kinseth M, Bossard C, Rose DW, Polishchuk R, Wu CC, Yates J, Zimmerman T, Malhotra V (Haziran 2008). "The role of GRASP55 in Golgi fragmentation and entry of cells into mitosis". Mol. Biol. Cell. 19 (6). ss. 2579-87. doi:10.1091/mbc.E07-10-0998. PMC 2397314 $2. PMID 18385516. 
  7. ^ Becker, Kleinsmith, Hardin, Bertoni (2009). the World of the Cell (İngilizce). San Francisco, CA: Pearson Benjamin Cummings. s. 333, 339. ISBN 0-321-55418-3. 
  8. ^ Krieger M, Scott MP, Matsudaira PT, Lodish HF, Darnell JE. Lawrence Z, Kaiser C, Arnold B (2004). Molecular cell biology (İngilizce) (5th edn bas.). New York: W.H. Freeman and CO. ISBN 0-7167-4366-3. 
  9. ^ "ZFPL1, a novel ring finger protein required for cis-Golgi integrity and efficient ER-to-Golgi transport". 17 Haziran 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Ekim 2011. 
  10. ^ "Regulated Secretion (Golgi): The Movie" (İngilizce). North Dakota State University. 9 Ekim 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Kasım 2010. 
  11. ^ a b Campbell, Neil A (1996). Biology (İngilizce) (4 bas.). Menlo Park, CA: Benjamin/Cummings. s. 122, 123. ISBN 0805319573. 
  12. ^ William G. Flynne (2008). Biotechnology and Bioengineering. Nova Publishers. ss. 45-. ISBN 9781604560671. 29 Haziran 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Kasım 2010. 
  13. ^ Kimball JW (9 Aralık 2009). "The Golgi Apparatus". Kimball's Biology Pages (İngilizce). 30 Mayıs 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Eylül 2010. 

Dış bağlantılar

  • Harris E, Cardelli J. "Golgi". Biyoloji Ansiklopedisi (İngilizce). 10 Eylül 2015 tarihinde kaynağından arşivlendi. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Sitoloji</span> Hücreleri inceleyen biyoloji dalı

Sitoloji veya hücre biyolojisi, kökü Yunancadaki kytos, barındırıcı kelimesidir), hücrelerin fizyolojisini, yapısını, içerdiği organelleri, bulunduğu ortamla olan ilişkisini, yaşam döngüsünü, bölünmesini ve ölümünü inceleyen bir bilim dalıdır. Bu işlem hem moleküler hem de mikroskobik ölçüde gerçekleştirilir. Sitoloji araştırmaları, bakteriler ve protozoa gibi tek hücreli organizmalardan, insan gibi çok hücreli organizmalara kadar büyük bir alana yayılır.

Hücre bir canlının yapısal ve işlevsel özellikler gösterebilen en küçük birimidir. Hücre kelimesi, ; Latince küçük odacık anlamına gelen "cellula" kelimesinden Robert Hooke tarafından türetilmiştir. Hücrenin içerisinde "Solunum, Boşaltım, Beslenme, Sindirim" gibi yaşamsal faaliyetler gerçekleşir.

<span class="mw-page-title-main">Lizozom</span> Organel

Lizozom, ökaryotik hücrelerin sitoplazmasında bulunan, zarla çevrili, genellikle küçük, yuvarlak ve çapları 0,2-0,8 mikron arasında değişen yapılardır. İçerikleri asidiktir ve çeşitli sindirici enzimler içerirler.

<span class="mw-page-title-main">Endoplazmik retikulum</span> Organel

Endoplazmik retikulum hücrede bulunan, veziküller, tüpler ve sisternalardan oluşmuş bir organeldir. Bu organel çeşitli işlevlerden sorumludur: membran proteinlerinin veya bir membran içinden geçerek salgılanacak olan proteinlerin çevrimi, katlanması ve taşınması; kalsiyum depolanması; ve bazı lipit ve makromoleküllerin depolanması.

<span class="mw-page-title-main">Ribozom</span> Tüm canlı hücrelerde bulunan zarsız organel.

Ribozom, tüm canlı hücrelerde bulunan karmaşık moleküler yapıya sahip ve protein oluşturma sürecinde hayati bir rol oynayan bir organeldir. Bu süreç, mRNA çevirisi olarak bilinen bir biyolojik mekanizma aracılığıyla gerçekleşir. Kısaca ribozomlar, haberci RNA (mRNA) molekülleri tarafından sağlanan talimatları takip ederek amino asitleri birbirine bağlar ve polipeptit adı verilen amino asit zincirlerini oluşturur.

<span class="mw-page-title-main">Ökaryot</span> hücrelerinde bir çekirdek ve genellikle organeller içeren canlılar

Ökaryotlar, hücrelerinde bir çekirdek ve –genellikle– organeller içeren bir canlılar grubu olup, bilimsel sınıflandırmada arkeler ve bakterilerle beraber tüm canlıları kapsayan üç ana gruptan biridir.

Merokrin bezler; sitoplazmalarından kayıp vermeden ya da çok az miktarda kayıpla salgı yapan hücrelerin oluşturduğu bezlerdir.

<span class="mw-page-title-main">Peroksizom</span> Bir organel türü

Peroksizom, hemen hemen tüm ökaryotik hücrelerde bulunan bir organeldir. Çok uzun zincirli yağ asitlerinin, dallı zincirli yağ asitlerinin, D amino asitlerinin, poliaminlerin katabolizmasında ve memelilerin beyin ve akciğerlerinin normal fonksiyonu için önem taşıyan bir eterfosfolipid olan plazmalojenlerin biyosentezi için gereklidir. Ayrıca enerji metabolizması için önemli olan pentoz fosfat yolundaki iki enzimin toplam aktivitesinin yaklaşık olarak %10'unu içerir. Peroksizomların, hayvanlardaki izoprenoid veya kolesterol senteziyle ilişkili olup olmadığı tartışılmaktadır. Filizlenen tohumlardaki glioksilat döngüsü ("glioksizom"), yapraklardaki fotosolunum, tripanazomatidlerdeki glikoliz ("glikozom") ve bazı mayalardaki metanol veya amin oksidasyonu ile asimilasyonu bilinen diğer peroksizomal işlevlerdir.

<span class="mw-page-title-main">Otofaji</span>

Otofaji, yeni ve daha sağlıklı hücreler elde edinmek için vücudun hasarlı hücreleri temizleme yoludur.

<span class="mw-page-title-main">Fosfatidilkolin</span>

Fosfatidilkolinler baş grubunda kolin parçası içeren bir fosfolipit sınıfıdır. Diğer fosfolipitler gibi, baş grubunun hidrofilik, kuyruk kısmının hidrofobik olması sonucu bu molekül, lipit çiftkatman oluşturur. Kolin grubu artı yüklü, fosfat grubu eksi yüklü olduğundan baş grubunun net yükü yoktur. Molekülün hidrofobik kısmını oluşturan yağ asitleri doymuş veya doymamış olabilir.

<span class="mw-page-title-main">Hücre iskeleti</span> Hücrelerin iç iskeletini oluşturan ipliksi protein ağı

Hücre iskeleti, bakteriler haricinde tüm hücrelerin sitoplazmasında bulunan, hücre çekirdeğinden hücre zarına uzanan ve protein filamentlerinin birbirine bağlayan kompleks ve dinamik bir ağıdır. Farklı organizmaların hücre iskeleti sistemleri benzer proteinlerden oluşur. Ökaryotlarda hücre iskeleti matrisi, hücrenin gereksinimlerine bağlı olarak hızlı büyüme veya küçülme yeteneğine sahip üç ana proteinden oluşan dinamik bir yapıdır.

Proteoglikanlar, çokça glikozillenmiş olan özel bir glikoprotein sınıfını temsil eder. Bir veya daha fazla kovalent bağla eklenmiş glikozaminoglikan (GAG) zincirli bir çekirdek (core) proteinden oluşur. Bu glikozaminoglikan zincirleri, sülfat ve üronik asit gruplarının ortamda bulunmasıyla ilişkili fizyolojik koşullar altında negatif yüklü olan uzun, doğrusal/çizgisel karbonhidrat polimerleridir. Bu proteoglikanlar insan bağ dokusundaki zemin maddesinde bulunabilirler.

<span class="mw-page-title-main">SREBP</span>

Sterol düzenleyici eleman bağlayıcı proteinler, "sterol düzenleme elemanı" adlı DNA dizisine bağlanan transkripsiyon faktörleridir. SREBP'ler transkripsiyon faktörlerinin bazik-sarmal-ilmik-sarmal lösin fermuar sınıfına aittirler. İnaktifken çekirdek ve endoplazmik retikulum zarlarına bağlı olurlar. Düşük seviyede sterol bulunduran hücrelerde SREBP'ler kesilir ve suda çözünür bir N-ucu bölge, çekirdeğe taşınır. Bu etkinleşmiş SREBP'ler sonra spesifik sterol düzenleyici eleman DNA dizilerine bağlanarak, sterol sentezinde yer alan enzimlerin sentezini yukarı ayarlarlar. Sterollar ise SREBP'lerin kesilmesini inhibe ettiği için geri beslemeli bir döngü ile sterol sentezi yavaşlar ve sonunda durur.

Glikozilasyon enzimler aracılığıyla sakkaritlerin birbirine bağlanarak proteinlere, lipitlere veya organik moleküllere bağlı glikanlar oluşturma sürecidir. Glikozilasyon çevrimle eş zamanlı ve çevrim sonrası bir değişim sürecidir. Glikanlar membran proteinlerinde ve salgılanan proteinlerde çeşitli yapısal ve işlevsel rollere sahiptir. Endoplazmik retikulumda sentezlenen proteinlerin çoğunluğu glikozilasyona uğrar. Bu süreç enzim güdümlü ve konuma özgündür, bu bakımdan enzimsiz yürüyen bir kimyasal tepkime olan glikasyondan farklıdır. Glikozilasyon ayrıca O-GlcNAc değişimi olarak sitoplazma ve çekirdekte de gerçekleşebilir. Altı sınıf glikan üretilir: 1) asparajin kalıntılarının amid azotuna bağlanan N-bağlı glikanlar, 2) serin ve treonin kalıntılarının hidroksil oksijenine bağlanan O-bağlı glikanlar, 3) serin kalıntılarının hidroksil oksijenine bağlanan glikosilaminoglikanlar, 4) glikanların seramid'e bağlı olduğu glikolipitler, 5) ne protein ve ne lipide bağlı olan hiyaluronan ve 6) glikan bağları aracılığıyla proteinleri lipitlere bağlayan GPI çapaları.

<span class="mw-page-title-main">Odontoblast</span>

Omurgalılarda, odontoblast, diş pulpasının dış yüzeyinin bir parçası olan nöral krest kökenli bir hücre olup dentinogenezde görev alır. Dentinogenez, kök yüzeyindeki sementin üstünde ve diş minesinin altında bulunan dentin maddesinin yapımıdır.

Nörodejenerasyon, nöronların ölümü de dahil olmak üzere nöronların ilerleyen yapı veya fonksiyon kaybıdır. Nörodejeneratif süreçlerin bir sonucu olarak amiyotrofik lateral skleroz, Parkinson hastalığı, Alzheimer hastalığı, ölümcül ailesel uykusuzluk ve Huntington hastalığı gibi birçok nörodejeneratif hastalık ortaya çıkar. Bu tür hastalıklar tedavi edilemez ve nöron hücrelerinin ilerleyici dejenerasyonu ve / veya ölümüyle sonuçlanır. Araştırmalar ilerledikçe, bu hastalıkları hücre altı düzeyde birbirleriyle ilişkilendiren birçok benzerlik ortaya çıkmaktadır. Bu benzerliklerin keşfedilmesi, birçok hastalığı aynı anda iyileştirebilecek terapötik ilerlemeler için umut vermektedir. Atipik protein düzenekleri ve uyarılmış hücre ölümü dahil olmak üzere farklı nörodejeneratif bozukluklar arasında birçok paralellik vardır. Nörodejenerasyon, molekülerden sistemik olana kadar birçok farklı nöronal devre seviyesinde bulunabilir.

<span class="mw-page-title-main">Çekirdek zarı</span>

Çekirdek zarı, ökaryotik hücrelerde genetik materyali çevreleyen çekirdeği çevreleyen iki çift tabakalı lipit zardan oluşan bir zardır.

Hücre döngüsü, bir hücrenin ömrü boyunca meydana gelen olayların sırasını ifade eder.

Oligosakkarit, az sayıda monosakkarit içeren bir karbonhidrat polimeridir. Oligosakkaritler, hücre tanıma ve hücre bağlanması dahil olmak üzere birçok fonksiyona sahiptir. Örneğin, glikolipidler bağışıklık tepkisinde önemli bir role sahiptir.

Biyolojik sistem, biyolojik olarak ilgili çeşitli varlıkları birbirine bağlayan karmaşık bir ağdır. Biyolojik organizasyon çeşitli ölçeklere yayılır ve sistemin ne olduğuna bağlı olarak farklı yapılar temelinde belirlenir. Makro ölçekteki biyolojik sistemlere örnek olarak organizma popülasyonları verilebilir. Memeliler ve diğer hayvanlardaki organ ve doku ölçeğinde ise dolaşım sistemi, solunum sistemi ve sinir sistemi örnek olarak verilebilir. Mikro ölçekten nanoskopik ölçeğe kadar biyolojik sistemlere örnek olarak hücreler, organeller, makromoleküler kompleksler ve düzenleyici yollar verilebilir. Biyolojik bir sistem, canlı bir organizma gibi yaşayan bir sistemle karıştırılmamalıdır.