İçeriğe atla

Goldwasser-Micali şifreleme sistemi

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

Temelleri

GM kriptosistemi kuadratik kalan probleminin p ve q büyük asal sayılar olmak üzere, N=p.q modunun zorluğunun varsayımına dayanan anlamsal güvenliktir. Bu varsayım verilen(x,N)'nin x'in, +1 için bir Jacobi sembolü olduğunda, N(x=y^2 mod N bazı y'ler için) modulüne göre kuadratik bir kalan olup olmadığını belirleme zorluğunu ifade eder. Kuadratik kalan problemi yeni kuadratik kalanlar herhangi bir kısım tarafından üretilebiliyorken verilen N nin çarpanlara ayırımını bu çarpanla ayrım bilgisi verilemese bile kolayca çözebilir. GM kriptosistemi birbirinden ayrı düz metin bitlerini ya rastgele kuadratik kalanlar ya da tüm kuadratik sembol +1 ile birlikte modül N'ye göre kalmayanları alıp şifreleyerek bu asimetrikliği sağlamış olur. Alıcılar N'nin çarpanlarını gizli anahtar olarak kullanır ve mesajı aldığı şifreli metnin değerlerinin kuadratik kalanını test ederek deşifrelerler.

Çünkü Goldwasser–Micali düz metnin her tek bitini şifrelemek için yaklaşık olarak |N| boyutunda bir değer üretir. GM şifreleme sağlam ölçüde şifreli metin genişlemesini sonucunu verir. Çarpanlara ayırmaya çalışma ataklarını önlemek için, |N| nin yüzlerce bit ya da daha fazla olması tavsiye edilmiştir. Bu yüzden yöntem temelde bir kavram kanıtı olarak hizmet eder ve Elgamal gibi daha etkili kanıtlanabilir güvenlik yöntemleri geliştirilmiştir. Çünkü şifreleme probabilistik algoritma kullanılarak şifrelenmiştir. Verilen bir düzmetin her bir zamanda şifrelediği birbirinden çok farklı şifrelimetinleri üretebilir. Bu hasımın bilinen şifrelimetinleri sözlükle karşılaştırarak haberleşmeler arasında müdahale edip eriştiği mesajlardan herhangi bir benzerlik bulup düz metne erişmeye çalışmasını önleme avantajı demektir.

Yöntemin Tanıtılması

Goldwasser–Micali 3 algoritma içerir: açık ve gizli anahtar üreten probabilistik anahtar üretimi algoritması, probabilistik kriptosistem algoritması ve bir deterministik deşifreleme algoritması.

Bu yöntem verilen bir x değerinin kare mod N, ((p,q) N nin çarpanları) olup olmadığına karar vermenin zorluğuna güvenmektedir. Bu aşağıdaki prosedürü kullanarak başarılır:

1. xp = x mod p, xq = x mod q Hesapla 2. EĞER VE ise x mod N. ye göre bir kuadratik kalandır.

Anahtar üretimi

GM içindeki kullanılan mod alma işlemi RSA kriptosistem içerisindeki aynı yöntemle gerçekleştirilir. (ayrıntılar için RSA anahtar üretimine bakınız)

1.Alice 2 farklı büyük p ve q asal sayılarını rastgele ve her biri bir birinden bağımsız olacak şekilde üretir. 2.Alice N = p q. yu hesaplar 3.Alice olacak şekilde bir x bulur ve bundan dolayı Jacobi sembolü is +1 dir.


X değeri rastgele sayılar seçerek ve 2 Legendre sembolünü test ederek bulunabilir. Eğer (p,q) =3 mod 4 (N Blum Tam sayısı) ise o zaman N-1 değeri gereken özelliği karşılıyor anlamına gelir. Açık anahtar (x,N) den oluşur. Gizli anahtar (p,q) çarpanlarından oluşur.

Mesaj Şifreleme

Varsayalım ki Bob Alice e m mesajını göndermeyi istesin:

Bob ilk önce m i (m1, ..., mn) bitlerinden oluşan bir string olarak çözecektir.

1.Her mi, biti için, Bob modulo N den birimler halinde rastgele y değeri üretir veya

GCD(y,N) = 1. olacak şekilde rastgele değerler üretir.
  . değerlerini sonuç olarak üretir.

Bob (c1, ..., cn). Şifreli metinlerini gönderir.

Mesaj Deşifreleme

Alice (c1, ..., cn) i alır. Aşağıdaki prosedürü kullanarak m yi geri elde edebilir.

1.Asal çarpan (p,q) kullanan Her bir i için, Alice ci değerinin kuadratik kalan olup olmadığını belirler eğer öyle ise mi = 0, değilse mi = 1. dir.

Alice m = (m1, ..., mn). Mesajını çıktı olarak üretir.

Güvenlik özellikleri

Burada basitçe bu kriptosistemi Jacobi sembolü +1 ile rastgele modül N değerinin kuadratik kalan olup olmadığını belirleme problemine dönüştürerek kırmaya çalışma vardır. Eğer verilen bir A algoritması kriptosistemi kırarsa, ardından verilen bir 'x' değerinin kuadratik modül N kalanı olup olmadığını belirlemek için, biz A'yı (x,N) açık anahtarlarını kullanarak kırabildiğini anlamak için test ederiz. Eğer 'x' bir kalan değilse o zaman 'A' doğru olarak çalışacaktır. Ancak eğer 'x' bir kalansa o zaman her şifreli metin basitçe rastgele kuadratik kalan olabilir, bu yüzden 'A' zamanın yarısından daha doğru olamaz. Bundan başka bu problem verilen bir 'B' için her açık anahtarı tıpkı diğer açık anahtar gibi güvenli kılan rastgele kendini dönüştürme problemidir.

GM kriptosistemi homomorfik özelliklere sahiptir. Eğer c0, c1 m0, m1, bitlerinin şifrelenmiş halleriyse o zaman c0c1 mod N, in şifrelenmiş halleri olacaktır. Bu sebebten dolayı GM kriptosistemi bazen daha karmaşık kriptografik ilkel yapılarla birlikte kullanılır.

Kaynakça

  • S. Goldwasser, S. Micali (1982). "Probabilistic encryption and how to play mental poker keeping secret all partial information". Proc. 14th Symposium on Theory of Computing. ss. 365-377. doi:10.1145/800070.802212. 
  • S. Goldwasser, S. Micali (1984). "Probabilistic encryption". Journal of Computer and System Sciences. 28 (2). ss. 270-299. doi:10.1016/0022-0000(84)90070-9. 

Dış bağlantılar

İlgili Araştırma Makaleleri

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

ElGamal şifrelemesi, Diffie-Hellman anahtar alış-verişi'ne dayanan bir asimetrik şifreleme algoritması olup Taher Elgamal tarafından 1984 yılında önerilmiştir.

Anlamsal güvenlik bir açık anahtarlı şifreleme sistemindeki güvenliği tanımlamak için sık kullanılan bir ifadedir. Bir şifreleme sisteminin anlamsal olarak güvenli olması için, hesaplama yetenekleri sınırlı olan bir saldırganın, elinde sadece şifreli metin ve buna karşılık gelen açık anahtar bulunduğunda, gizli metin hakkında önemli bilgi çıkartabilmesinin uygulanabilir olmaması gerekir. Anlamsal güvenlik sadece "edilgin" saldırgan durumunu inceler, örn. bir kişinin açık anahtarı kullanarak sadece seçtiği açık metinlere karşılık gelen şifreli metinleri incelediği durum. Diğer güvenlik tanımlamaları gibi, anlamsal güvenlik, saldırganın seçtiği bazı şifreli metinlerin açık hallerini elde edebildiği seçilen şifreli metin saldırısı durumunu göz önünde bulundurmaz ve birçok anlamsal güvenlik şifreleme şemalarının seçilen şifreli metin saldırısına karşı güvensizliği gösterilebilir. Sonuç olarak anlamsal güvenlik genel bir şifreleme şemasının güvenliğini tanımlamak için yetersiz sayılır.

<span class="mw-page-title-main">Dijital İmza Algoritması</span>

Dijital İmza Algoritması dijital imza için bir FIPS standardıdır. Ağustos 1991'de National Institute of Standards and Technology (NIST) tarafından tasarlanmıştır. Dijital imza algoritması, ElGamal İmza Algoritması'nın bir varyantıdır.

ElGamal imza şeması Ayrık Logaritmanın hesaplanmasının zorluğuna dayanan bir dijital imzadır. Tahir el-Cemal tarafından 1984 yılında bulunmuştur. Açık anahtarlı kriptosistemi ve imza şeması ayrık logaritmaya dayanmaktadır.

Rabin şifreleme sistemi, Rabin kriptoloji veya Rabin kriptosistemi, güvenliği RSA'daki gibi tam sayı çarpanlarına ayırmanın zorluğu üzerine kurgulanmış olan asimetrik bir kriptografik tekniktir. Bununla birlikte, Rabin kriptosisteminin avantajı, saldırgan tam sayıları verimli bir şekilde çarpanlarına ayıramadığı sürece, seçilmiş bir düz metin saldırısına karşı hesaplama açısından güvenli olduğu matematiksel olarak kanıtlanmıştır, oysa RSA için bilinen böyle bir kanıt yoktur. Rabin fonksiyonunun her çıktısının dört olası girdiden herhangi biri tarafından üretilebilmesi dezavantajı; her çıktı bir şifreli metinse, olası dört girdiden hangisinin gerçek düz metin olduğunu belirlemek için şifre çözmede ekstra karmaşıklık gerekir.

Kriptografide çalışma kipleri, bir blok şifrenin tek bir anahtar altında güvenli bir şekilde tekrarlı kullanımına olanak veren yöntemlerdir. Değişken uzunluktaki mesajları işlemek için veriler ayrı parçalara bölünmelidir. Son parça şifrenin blok uzunluğuna uyacak şekilde uygun bir tamamlama şeması ile uzatılmalıdır. Bir çalışma kipi bu bloklardan her birini şifreleme şeklini tanımlar ve genellikle bunu yapmak için ilklendirme vektörü (IV) olarak adlandırılan rastgele oluşturulmuş fazladan bir değer kullanır.

Paillier şifrelemesi , 1999’da Pascal Paillier tarafından geliştirilen olasılıksal açık anahtarlı şifreleme yöntemidir. n’inci kök sınıflarını hesaplamanın zorluğunu kullanan Paillier şifreleme sistemi, kararsal bileşik kök sınıfı varsayımı üzerine kurulmuştur. Sistem, toplama işlemine göre homomorfik özellik gösterir; yani sadece açık anahtarı, ve ’nin şifrelemesini kullanarak ’nin şifrelenmiş hâli hesaplanabilir.

Blum–Goldwasser Kriptosistem veya Blum-Goldwasser şifreleme sistemidir. 1984 yılında Manuel Blum ve Şafi Goldwasser tarafından önerilen bir asimetrik anahtar şifreleme algoritmasıdır. Bulum-Goldwasser bilinen en verimli kripto sistemlerden biridir. RSA ile hız ve mesaj genişlemesi açısından kıyaslanabilir. Bu şifreleme algoritmasında rastgele sayı üretmek için Blum Blum Shub rastgele sayı üretme algoritması kullanılır. Büyük sayıların asal çarpanlarına ayrılma probleminin çözülemezliği kabulüne dayanan bir şifreleme algoritmasıdır.

Probabilistik kriptosistem şifreleme algoritması içinde rastgeleselliğin kullanımıdır böylece aynı mesaj birçok kez şifrelendiğinde genel olarak farklı şifreli metinler üretecektir.

<span class="mw-page-title-main">Diffie-Hellman anahtar değişimi</span> dünyanın enyuksek dagı

Diffie-Hellman anahtar değişimi (D-H), kriptografik anahtarların değişiminde kullanılan özel bir yöntemdir. Bu kriptografi alanında uygulanan ilk pratik anahtar değişimi örneklerinden biridir. Diffie-Hellman anahtar değişimi metodu, güvenilmeyen bir sistem üzerinden iletişim kurmak isteyen karşılıklı iki tarafın ortaklaşa bir anahtar üzerinde karar kılabilmesine olanak sağlar. Böylece, iki tarafın da karar kıldığı bir simetrik anahtar, güvenli olmayan sistem üzerinden iletişimi şifrelemek için kullanılabilir. Diffie-Hellman protokolünde amaç, iletişim kurmak isteyen iki taraf arasındaki anahtar değişim prosedürünü, anahtarın kötü tarafların eline geçmediğine emin olacak şekilde güvenli bir şekilde gerçekleştirmektir. Bu işlem bir defa yapıldığında ve taraflar bir anahtar üzerinde ortaklaştığında her iki taraf da kendi mesajını paylaşılan anahtarla şifreleyebilir, böylece taraflar arasındaki iletişim güvenli bir şekilde sağlanmış olur.

Okamoto–Uchiyama kriptosistemi, 1998'de T. Okamoto ve S. Uchiyama tarafından bulundu. Sistem kümesinde çalışır, n p2q ya eşittir ve p ve q büyük asal sayılardır.

Merkle-Hellman kripto sistemi, 1978 yılında Martin Hellman ve Ralph Merkle tarafından geliştirilen ilk açık anahtarlı kriptosistemlerden biridir. RSA'dan daha hızlı gerçekleştirilebilmesine rağmen Adi Shamir tarafından 1982'de güvensiz olduğu gösterilmiştir.

<span class="mw-page-title-main">Jacobi sembolü</span>

Jacobi sembolü Legendre sembolünün bir genellemesidir. 1837 yılında Jacobi tarafından tanıtılan bu teori, modüler aritmetik ve sayılar teorisinin diğer dallarındandır ama ana kullanımı hesaplamada sayılar teorisi, özellikle asallık testi ve tam sayıları çarpanlara ayırma olarak kriptografide oldukça önemlidir.

<span class="mw-page-title-main">Eliptik eğri kriptografisi</span>

Eliptik Eğri Kriptolojisi, sonlu cisimler üzerindeki eliptik eğrilerin cebirsel topolojisine dayanan bir açık anahtar şifrelemesidir. Eliptik Eğri Kriptolojisi, diğer şifrelemeler göre daha küçük anahtar boyuna ihtiyaç duyar.

Schmidt-Samoa şifreleme, Alman araştırmacı Katja Schmidt-Samoa tarafından 2005’te oluşturulan asimetrik kriptografi yöntemidir. Bu şifrelemenin güvenilirliği Rabin'deki gibi çarpanlara ayırma probleminin zorluğuna dayanmaktadır. Bu algoritma, Rabin'in aksine şifreleme hızı pahasına, şifre çözmede belirsizlik oluşturmamaktadır.

Kriptografide Eliptik Eğri Dijital İmza Algoritması (ECDSA), eliptik eğri şifrelemesi kullanan birçok çeşit Dijital İmza Algoritması (DSA) sunar.

Eliptik Eğri Diffie-Hellman (ECDH), güvensiz bir kanal üzerinden paylaşılan bir giz oluşturmak için her biri eliptik-eğri açık-özel anahtar çiftine sahip iki partiye izin veren anonim bir anahtar anlaşma protokolüdür. Bu paylaşılan sır doğrudan bir anahtar olarak veya başka bir anahtar türetmek için kullanılabilir. Anahtar veya üretilen anahtar, daha sonra sonraki iletişimleri, bir simetrik anahtar algoritması kullanarak şifrelemek için kullanılabilir. Bu, Diffie-Hellman protokolünün eliptik eğri kriptografisi kullanan bir çeşididir.

Benaloh kriptosistemi 1994 yılında Josh (Cohen) Benaloh tarafından oluşturulan Goldwasser-Micali şifreleme sisteminin bir genişletilmesidir. Goldwasser-Micali'de bitler tek tek şifrelenirken, Benaloh Kriptosisteminde veri blokları grup olarak şifrelenmektedir. Orijinal makaledeki küçük bir hata Laurent Fousse et al. 'da düzeltilmiştir.

<span class="mw-page-title-main">Şifreli metin</span> şifrelenmiş bilgi

Kriptografide, şifreli metin, şifreleme adı verilen bir algoritma kullanılarak düz metin üzerinde gerçekleştirilen şifreleme işleminin sonucunda elde edilen çıktıdır. Şifreli metin, aynı zamanda şifrelenmiş veya kodlanmış bilgi olarak da bilinir çünkü orijinal düz metnin, şifresini çözmek için uygun şifre olmadan bir insan veya bilgisayar tarafından okunamayan bir biçimini içerir. Bu işlem, hassas bilgilerin bilgisayar korsanlığı yoluyla kaybolmasını önler. Şifrelemenin tersi olan Şifre çözme, şifreli metni okunabilir düz metne dönüştürme işlemidir. Şifreli metin, kod metni ile karıştırılmamalıdır çünkü ikincisi bir şifrenin değil bir kodun sonucudur.