İçeriğe atla

Goldman denklemi

Daha yaygın ismiyle Goldman denklemi olarak bilinen Goldman-Hodgkin-Katzl denklemi, hücre zarıfizyolojisinde, hücre zarından geçen tüm iyonları hesaba katarak hücre zarındaki ters potansiyeli belirlemek için kullanılır.

Bunu keşfedenler, Columbia Üniversitesi'nden David E. Goldman ve İngiliz Nobel ödüllü Alan Lloyd Hodgkin ve Bernard Katz'dır.

Tek değerli iyonlar için denklem

tek değerli pozitif iyonik türler ve negatif için GHK voltaj denklemi:

İki -çözeltisini ayıran bir zarı düşünürsek, bu aşağıdakilerle sonuçlanır:[1][2][3]

Nernst denklemine benzer ancak her geçirgen iyon için bir terimi vardır:

  • = membran potansiyeli (volt cinsinden, joule/coulomb)
  • = o iyon için seçicilik (metre/saniye cinsinden)
  • = o iyonun hücre dışı konsantrasyonu (diğer SI birimleriyle eşleşmesi için mol/metreküp cinsinden)[4]
  • = o iyonun hücre içi konsantrasyonu (mol/metreküp cinsinden)[4]
  • = ideal gaz sabiti (kelvin/joule)[4]
  • = kelvin cinsinden sıcaklık[4]
  • = Faraday sabiti (coulomb/mol)

insan vücut sıcaklığında (37 °C) yaklaşık 26,7 mV'dir; doğal logaritma, ln ve 10 tabanlı logaritma arasındaki taban değiştirme formülünde çarpanlara ayrılırdığında , sinirbilimde sıklıkla kullanılan bir değer olan olur.

İyonik yük, zar potansiyeli katkısının işaretini belirler. Bir aksiyon potansiyeli sırasında, zar potansiyeli yaklaşık 100mV değişse de, hücre içindeki ve dışındaki iyon konsantrasyonları önemli ölçüde değişmez. Membran dinlenme potansiyelindeyken, her zaman ilgili konsantrasyonlarına çok yakındırlar.

İlk terimin hesaplanması

, , (vücut sıcaklığı varsayılarak) ve bir voltun joule/coulomb yüküne eşit olduğu gerçeğini kullanarak, denklem:

indirgenebilir,

bu Nernst denklemidir.

Türetme

Goldman denklemi, bir zar boyunca Em voltajını belirlemeye çalışır.[5] Sistemi tanımlamak için bir Kartezyen koordinat sistemi kullanılır, z yönü membrana diktir. Sistemin x ve y yönlerinde simetrik olduğunu varsayarsak (sırasıyla akson çevresinde ve boyunca), yalnızca z yönünün dikkate alınması gerekir; bu nedenle, Em voltajı, zar boyunca elektrik alanının z bileşeninin integralidir.

Goldman'ın modeline göre, geçirgen bir zar boyunca iyonların hareketini sadece iki faktör etkiler: ortalama elektrik alanı ve zarın bir tarafından diğerine iyonik derişim farkı. Elektrik alanının zar boyunca sabit olduğu varsayılır, böylece Em/L'ye eşit olarak ayarlanabilir, burada L zarın kalınlığıdır. Değerliği nA olan A ile gösterilen belirli bir iyon için, jA akısı—başka bir deyişle, zarın zaman başına ve alanı başına geçen iyon sayısı—aşağıdaki formülle verilir:

İlk terim, konsantrasyon gradyanında, yani yüksek derişimden düşük derişime doğru difüzyondan kaynaklanan akıyı veren Fick'in difüzyon yasasına karşılık gelir. DA sabiti, A iyonunun difüzyon sabitidir. İkinci terim, elektrik alanla doğrusal olarak artan ve elektrik alandan kaynaklanan akıyı yansıtır; bu, elektroforetik hareketliliğe uygulanan bir Stokes-Einstein ilişkisidir. Buradaki sabitler, A iyonunun yük değeri nA (örneğin, K+ için +1, Ca2+ için +2 ve Cl− için -1), sıcaklık T (kelvin cinsinden), molar gaz sabiti R ve bir mol elektronun toplam yükü olan faraday sabiti F'dir.

Bu, y = [A] ve y' = d[A]/dz olmak üzere y' = ay + b biçimindeki birinci dereceden bir adi diferansiyel denklemdir; [A](0) = [A]in ve [A](L) = [A]out sınır koşulları ile z=0'dan z=L'ye her iki tarafı da entegre ederek, çözüm elde edilir:

burada:

ve PA, burada şu şekilde tanımlanan iyonik geçirgenliktir:

Elektrik akımı yoğunluğu JA, iyonun qA yükünün jA akısı ile çarpımına eşittir:

Akım yoğunluğu (Amper/m2) birimlerine sahiptir. Molar akı (mol/(s m²)) birimlerine sahiptir. Bu nedenle, molar akıdan akım yoğunluğunu elde etmek için Faraday sabiti F (Coulombs/mol) ile çarpılması gerekir. F daha sonra aşağıdaki denklemden çıkarılacaktır. Değerlik yukarıda zaten açıklandığı için, yukarıdaki denklemdeki her iyonun qA yükü, iyonun polaritesine bağlı olarak +1 veya -1 olarak yorumlanmalıdır.

Zardan geçebilen her tür iyonla ilişkili böyle bir akım vardır. Bunun nedeni, her bir iyon tipinin difüzyonu dengelemek için ayrı bir zar potansiyeli gerektirmesidir, ancak yalnızca bir zar potansiyeli olabilir. Varsayım olarak, Goldman voltajı Em'de toplam akım yoğunluğu sıfırdır:

(Burada ele alınan her bir iyon tipi için akım sıfır olmasa da, membranda başka pompalar da vardır, örneğin her bir iyonun akımını dengelemeye hizmet eden Na+/K+-ATPaz, burada dikkate alınmaz ve böylece membranın her iki tarafındaki iyon konsantrasyonları dengede zamanla değişmez.) Tüm iyonlar tek değerlikliyse, yani tüm nA +1 veya -1'e eşitse, bu denklem yazılabilir:

çözümü Goldman denklemi olan:

burada:

Kalsiyum gibi iki değerlikli iyonlar dikkate alınırsa, eμ'nin karesi olan e gibi terimler ortaya çıkar; bu durumda Goldman denkleminin formülü kuadratik formül kullanılarak çözülebilir.

Ayrıca bakınız

Kaynakça

  1. ^ John D. Enderle, Susan M. Blanchard and Joseph D. Bronzino (1 Ocak 2005). Introduction to Biomedical Engineering (Second Edition)"Bioelectric Phenomena". Introduction to Biomedical Engineering (İngilizce). Biomedical Engineering: Boston: Academic Press: 627-691. doi:10.1016/B978-0-12-238662-6.50013-6. 28 Haziran 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Haziran 2021. 
  2. ^ LuisReuss (1 Ocak 2008). CHAPTER 2 - Mechanisms of Ion Transport Across Cell Membranes and Epithelia"Mechanisms of Ion Transport Across Cell Membranes and Epithelia". Seldin and Giebisch's The Kidney (Fourth Edition) (İngilizce). Physiology and Pathophysiology: San Diego: Academic Press: 35-56. doi:10.1016/B978-012088488-9.50005-X. 24 Haziran 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Haziran 2021. 
  3. ^ John D.EnderlePhD (1 Ocak 2012). Chapter 12 - Bioelectric Phenomena"Bioelectric Phenomena". Introduction to Biomedical Engineering (Third Edition) (İngilizce). Biomedical Engineering: Boston: Academic Press: 747-815. doi:10.1016/B978-0-12-374979-6.00012-5. 24 Haziran 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Haziran 2021. 
  4. ^ a b c d NarendraBhadra (1 Ocak 2015), "2 - Physiological principles of electrical stimulation", Implantable Neuroprostheses for Restoring Function, Woodhead Publishing Series in Biomaterials (İngilizce), Woodhead Publishing, ss. 13-43, doi:10.1016/b978-1-78242-101-6.00002-1, ISBN 978-1-78242-101-6, 30 Haziran 2021 tarihinde kaynağından arşivlendi, erişim tarihi: 23 Ekim 2020 
  5. ^ Junge, Douglas (1981). Nerve and muscle excitation. Internet Archive. Sunderland, Mass. : Sinauer Associates. ss. 33-37. ISBN 978-0-87893-410-2. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Pareto dağılımı</span>

Pareto dağılımı, olasılık kuramı ve istatistik bilim dallarında birçok pratik uygulaması bulunan ve "küçük" bir nesnenin bir "büyük" nesneye dağılımında kararlılık elde edildiği hallerde kullanılan bir sürekli olasılık dağılımı veya bir güç kuramıdır. İlk olarak bir İtalyan iktisatçısı olan Vilfredo Pareto tarafından ekonomilerde bireylerin servet dağılımını göstermek için kullanılmıştır. İktisat bilim dalı dışında bu dağılım Bradford dağılımı adı altında da bilinmektedir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">İletim hattı</span>

İletim hattı, elektronik ve haberleşme mühendisliğinde, akımın dalga karakteristiğinin hesaba katılmasını gerektirecek kadar yüksek frekanslarda, radyo frekansı, alternatif akımın iletimi için tasarlanmış özel kablo. İletim hatları radyo vericisi, alıcısı ve bunların anten bağlantıları, kablolu televizyon yayınlarının dağıtımı ve bilgisayar ağları gibi yerlerde kullanılır.

Matematikte, Lambert W fonksiyonu, aynı zamanda Omega fonksiyonu veya çarpım logaritması olarak da bilinen bir fonksiyon kümesidir.

Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.

<span class="mw-page-title-main">Hipsometrik denklem</span>

İki izobarik yüzey arasındaki kalınlık, h tabakasının ortalama sanal sıcaklığına ilişkin bir denklemi verir.

Elektrokimyada Nernst denklemi, bir elektrokimyasal reaksiyonun indirgenme potansiyelini ; indirgeme ve oksidasyona uğrayan kimyasal türlerin standart elektrot potansiyeli, sıcaklığı ve aktiflikleri ile ilişkilendiren bir denklemdir. Denklemi formüle eden Alman fiziksel kimyacı Walther Nernst'in adını almıştır.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi:

<span class="mw-page-title-main">Logaritmik ortalama</span>

Matematikte logaritmik ortalama, iki pozitif gerçek sayının farkının bu sayıların doğal logaritmalarının farkına oranı olarak tanımlanır. Bu hesaplama, ısı ve kütle transferi içeren mühendislik problemlerinde kullanılabilir.

<span class="mw-page-title-main">Weber sayısı</span>

Weber sayısı (We), akışkanlar mekaniği alanında farklı iki akışkan arasındaki ara yüzeylerin bulunduğu akışkan akışlarını analiz ederken sıkça kullanılan bir boyutsuz sayıdır ve özellikle yüksek derecede eğilmiş yüzeylere sahip çok fazlı akışlar için oldukça faydalıdır. Bu sayı, Moritz Weber (1871–1951)'in adıyla anılmaktadır. Bu sayı, akışkanın eylemsizliğinin yüzey gerilimine kıyasla göreceli önemini ölçmek için kullanılan bir parametre olarak düşünülebilir. İnce film akışlarının ve damlacık ile kabarcık oluşumlarının analizinde büyük önem taşır.