İçeriğe atla

Glutamat

Glutamat
Farmakokinetik veri
Metabolizmaglutamat dehidrojenaz
Tanımlayıcılar
  • 2-Aminopentanedioic acid
CAS Numarası
PubChem CID
Kimyasal ve fiziksel veriler
FormülC5H8NO4
Mol kütlesi146.122

Glutamat, glutamik asidin anyonudur ve sinirbilimde nörotransmitter olarak görev alır; bir sinir hücresinin başka hücrelere sinyal olarak gönderdiği kimyasallardan biridir. Omurgalı sinir sistemi içerisinde geniş farkla en fazla bulunan nörotransmitterdir.[1] Omurgalı beyninde tüm uyarıcı fonksiyonlarda kullanılır, bu insan beynindeki sinaptik bağlantıların %90'ından fazlasına denk gelir. Bazı beyin bölgelerinde (örn. beyincik granül hücreleri) birincil nörotransmitterdir.

Glutamat biyokimyasal reseptörleri, AMPA reseptörleri, NMDA reseptörleri ve metabolik glutamat reseptörleri olarak üç ana sınıfa ayrılır. Bir dördüncü sınıf olarak bilinen kainat reseptörleri, AMPA reseptörlerine pek çok bakımdan benzer fakat daha az bulunur. Birçok sinaps glutamat reseptörlerinin çoklu tipleridir. AMPA reseptörleri, çabuk uyarma için uzmanlaşmış iyonotropik reseptörlerdir: pek çok sinapsta uyarıldıktan milisaniyeden kısa süre sonra uyarıcı elektriksel yanıt üretir. NMDA reseptörleri de iyonotropiktir, ama onlar AMPA reseptörlerinden farklı olarak aktive olduklarında kalsiyum geçirgenlerdir. Onların bu özellikleri bilhassa öğrenme ve bellekte onları önemli kılar. Metabotropik reseptörler ikinci haberci sistemleri ile çalışırlar ve hedefleri üzerinde yavaş ve sürekli etki oluştururlar.

Sinaptik plastisitedeki rolü sebebiyle glutamat beyinde öğrenme ve hafıza gibi bilişsel işlevlerde görev alır.[2] Uzun süreli güçlenme olarak bilinen plastisite formu hipokampus, neokorteks ve diğer beyin bölümlerinin glutamaterjik sinapslarında yer alır. Glutamat noktadan noktaya iletici gibi çalışmanın yanında, sinaptik kargaşadan taşanlar yardımıyla da çalışır; komşu sinapslardan salgılanan glutamatların toplamı ekstrasinaptik sinyal/ses iletimi yaratır.[3] Ayrıca glutamat, beyin gelişimi sırasında büyüme konileri ve sinaptogenez düzenlenmesinde önemli rol oynar.

Biyosentezi

Glutamat geniş bir yelpazede proteinin önemli bir bileşenidir; bu nedenle insan vücudunda en çok bulunan amino asitlerden biridir. Normal koşullar altında yemeklerden yeteri kadar elde edilir ve sentezlenmeye gerek yoktur. Yine de glutamat, resmi olarak gereksiz (non-essential) amino asit olarak sınıflandırılır, çünkü sitratla başlayan bir dizi reaksiyon olan sitrik asit döngüsünün bir kısmında üretilen alfa-ketoglutarik asitten sentezlenebilir. Glutamat kan-beyin bariyerini desteksiz geçemez, ama sinir sistemine yüksek çekimli taşıma sistemi ile aktif olarak taşınır, böylece beyin sıvısındaki konsantrasyonu oldukça sabit düzeyde tutulur.[4]

Glutamat, merkezi sinir sisteminde glutaminaz enzimi tarafından glutamat-glutamin döngüsünün bir bölümünde sentezlenir. Bu presinaptik nöronda ya da komşu glia hücrelerde meydana gelir.

Glutamat, glutamat dekarboksilaz enziminin eylemi sayesinde GABA nörotransmitteri için metabolik haberci görevi görür.

Hücresel etkileri

Memeli beyninde glutamat reseptörleri
Aile Tür Mekanizması
AMPAİyonotropik Sodyum ve potasyum için membran geçirgenliğini artırır
kainat İyonotropik Sodyum ve potasyum için membran geçirgenliğini artırır
NMDA İyonotropi, voltaj kapılı Kalsiyum için membran geçirgenliğini artırır
metabotropik

Grup I

Gq-birleşmiş Fosfolipaz C'yi aktive ederek IP3 ve diasil gliserolü artırır
metabotropik

Grup II

Gı/G0-birleşmiş Adenilat siklazı inhibe ederek hücre içi cAMP seviyesini düşürür
metabotropik

Grup III

Gı/G0-birleşmiş Adenilat siklazı inhibe ederek hücre içi cAMP seviyesini düşürür

Glutamat hücre yüzey reseptörlerine bağlanıp aktive ederek etkisini gösterir. Memelilerde, dört aileye ait glutamat reseptörleri tespit edilmiştir, AMPA reseptörleri, kainat reseptörleri, NMDA reseptörleri ve metabotropik glutamat reseptörleri. İlk üç aile iyonotropiktir, yani aktive olduklarında membran kanallarını açarak iyonların geçişine izin verirler. Metabotropik aile G-protein reseptörleridir, etkilerini karmaşık ikinci haberci sistemleri vasıtasıyla gösterirler.

Hastalık, engeller ve farmakoloji

Glutamat taşıyıcıları,[5] EAAT ve VGLUT, nöronal ve gliyal membranlarda bulunur ve glutamatı hızlıca ekstrasellüler alana kaldırırlar. Beyin yaralanmaları veya hastalıkta, genelde ters çalışırlar ve aşırı glutamat hücre dışında birikebilir. Bu işlem kalsiyum iyonlarının NMDA reseptör kanalları vasıtasıyla hücre içine girmesine, sinir hasarına ve nihai olarak hücre ölümüne sebebiyet verir, eksitotoksisite olarak isimlendirilir. Hücre ölümü mekanizması şunları içerir

  • Aşırı hücre içi Ca2+ sonucu mitokondri hasarı[6]
  • Artan hücre içi nitrik oksit konsantrasyonu[7]
  • Pro-apoptotik genler için Glu/Ca2+-aracılı transkripsiyon faktörleri teşviki ya da anti-apoptotik genler için transkripsiyon faktörlerinin baskılanması

Aşırı glutamat salınımı ve bozulmuş geri alım nedeniyle oluşan eksitotoksisite iskemik kaskadın bir parçası olarak meydana gelir ve inme,[8] otizm,[9] bazı fikri sakatlık formları ve amiyotrofik lateral skleroz, latirizm ve Alzheimer hastalığı gibi bazı hastalıklarla ilişkilendirilir.[10] Öte yandan, azalmış glutamat salınımı klasik fenilketonüri durumunda gözlemlenir [11] ve glutamat reseptör ifadesinin gelişimsel bozulumuna sebebiyet verir.[12]

Glutamik asit epileptik nöbetler ile karıştırılmıştır. Glutamik asidin nöronlara mikroenjeksiyonu bir saniye arayla kendiliğinden meydana gelen depolarizasyonlar üretir, bu ateşleme modeli ayrıca epileptik ataklardaki paroksismal depolarize vardiyası olarak da bilinir. Nöbet odaklarındaki membranlarda meydana gelen, dinlenme potansiyelindeki bu değişim, voltaja bağlı kalsiyum kanallarının kendiliğinden açılması nedeniyle glutamik asit salınımına ve dolayısıyla daha da depolarize olmasına sebebiyet verebilir.[]

Karşılaştırmalı biyoloji ve evrim

Glutamat, sinir sistemine sahip tüm hayvanlarda nörotransmitter olarak görev alır. Buna taraklılar da dahildir, üstelik taraklılar evrimin erken fazında diğer filumlardan ayrılmıştır ve serotonin, asetilkolin gibi diğer nörotransmitterlerlere sahip değildir.[13] Bunun yerine taraklılar iyonotropik glutamat reseptörlerinin işlevsel olarak farklı bir türüne sahiptir, bu reseptörlerin harekete geçirilmesi kas kasıılması ve diğer yanıtları tetikleyebilir.

Süngerler bir sinir sistemine sahip değildir, ama yine de hücreden hücreye sinyal gönderiminde glutamatı kullanırlar. Süngerler metabotropik glutamat reseptörlerine sahiptirler ve süngerde glutamat kullanıldığında kontaminasyondan kurtulmak için tüm vücudun tepkisini tetikleyebilir.[14] Sinir sistemi olmayan ilkel bir organizma olan Placozoa genomu, pek çok metabotropik glutamat reseptörüne sahiptir, ama işlevi henüz bilinmemektedir.[15]

Eklem bacaklılar ve yuvarlak solucanlarda (nematodlarda) glutamat, glutamat kapılı klorür kanallarını uyarır.[] Reseptörün β alt birimleri glutamat ve glisine çok yüksek afinite ile cevap verir.[16] Bu reseptörleri hedeflemek avermektin kullanılarak antelmintik terapinin tedavisel amacı olmuştur. Avermektinler glutamat kapılı klorür kanallarının α alt birimlerini yüksek afinite ile hedefler.[17] Bu reseptörler Drosophila melanogaster[18] ve Lepeophtheirus salmonis[19] gibi eklembacaklılarda anlatılmıştır. Bu reseptörlerin geri dönüşsüz olarak harekete geçirilmesi sinapsların hiperpolarizasyonu, nöromüsküler kavşakların flaksik felci ve eklembacaklılarla yuvarlak solucanların ölümü ile sonuçlanır.

Tarih

Glutamatın vücudun tüm kısımlarında protein yapıtaşı olarak bulunması sinir sistemindeki rolünün keşfedilmesini zorlaştırmıştır: 1970'lere kadar nörotransmitter görevi kabul edilmemiştir, bu asetilkolin, norepinefrin ve serotonin gibi nörotransmitterlerin tanınmasından onyıllar sonraya denk gelir.[20] Glutamatın transmitter olarak görev yapabileceği önerisi ilk olarak 1952 yılında T. Hayoshi tarafından yapılmıştır, köpeklerde serebral ventriküllere glutamat enjeksiyonunun nöbete sebep olduğu buluşundan etkilenmiştir.[21] Bu fikre diğer destek de kısa sürede ortaya çıkmıştır fakat fizyolojistlerin büyük çoğunluğu çeşitli teorik ve deneysel sepeblerden ötürü şüpheyle yaklaşmışlardır. İronik olarak şüphenin en yaygın sebeplerinden biri glutamatın merkezi sinir sistemi üzerindeki uyarıcı etkisinin evrenselliğiydi, bir nörotransmitterin özgüllüğü ile tutarsız görünüyordu. Şüphenin diğer sebepleri, bilinen antagonistlerin ve inaktivasyon mekanizmalarının olmayışıydı. 1970'lerdeki buluşlar zinciri şüpheleri kaldırdı ve 1980'lere gelindiğinde kanıtlar neredeyse evrensel olarak kabul edilmesini zorunlu kılmıştır.

Kaynakça

  1. ^ Meldrum BS (Nisan 2000). "Glutamate as a neurotransmitter in the brain: review of physiology and pathology" (PDF). The Journal of Nutrition. 130 (4S Suppl). ss. 1007S-15S. PMID 10736372. 18 Kasım 2017 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 28 Kasım 2017. 
  2. ^ McEntee WJ, Crook TH (1993). "Glutamate: its role in learning, memory, and the aging brain". Psychopharmacology. 111 (4). ss. 391-401. doi:10.1007/BF02253527. PMID 7870979. 
  3. ^ Okubo Y, Sekiya H, Namiki S, Sakamoto H, Iinuma S, Yamasaki M, Watanabe M, Hirose K, Iino M (Nisan 2010). "Imaging extrasynaptic glutamate dynamics in the brain". Proceedings of the National Academy of Sciences of the United States of America. 107 (14). ss. 6526-31. doi:10.1073/pnas.0913154107. PMC 2851965 $2. PMID 20308566. 
  4. ^ Smith QR (Nisan 2000). "Transport of glutamate and other amino acids at the blood-brain barrier". The Journal of Nutrition. 130 (4S Suppl). ss. 1016S-22S. PMID 10736373. 7 Temmuz 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Kasım 2017. 
  5. ^ Shigeri Y, Seal RP, Shimamoto K (Temmuz 2004). "Molecular pharmacology of glutamate transporters, EAATs and VGLUTs". Brain Research. Brain Research Reviews. 45 (3). ss. 250-65. doi:10.1016/j.brainresrev.2004.04.004. PMID 15210307. 
  6. ^ Manev H, Favaron M, Guidotti A, Costa E (Temmuz 1989). "Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death". Molecular Pharmacology. 36 (1). ss. 106-12. PMID 2568579. 
  7. ^ Murphy, Michael P (5 Mayıs 1999). "Nitric oxide and cell death". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1411 (2). ss. 401-414. doi:10.1016/s0005-2728(99)00029-8. 
  8. ^ Robert Sapolsky (2005). "Biology and Human Behavior: The Neurological Origins of Individuality, 2nd edition". The Teaching Company. see pages 19 and 20 of Guide Book 
  9. ^ Shinohe A, Hashimoto K, Nakamura K, Tsujii M, Iwata Y, Tsuchiya KJ, Sekine Y, Suda S, Suzuki K, Sugihara G, Matsuzaki H, Minabe Y, Sugiyama T, Kawai M, Iyo M, Takei N, Mori N (Aralık 2006). "Increased serum levels of glutamate in adult patients with autism". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 30 (8). ss. 1472-7. doi:10.1016/j.pnpbp.2006.06.013. PMID 16863675. 
  10. ^ Hynd MR, Scott HL, Dodd PR (Ekim 2004). "Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease". Neurochemistry International. 45 (5). ss. 583-95. doi:10.1016/j.neuint.2004.03.007. PMID 15234100. 
  11. ^ Glushakov AV, Dennis DM, Sumners C, Seubert CN, Martynyuk AE (Nisan 2003). "L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses". Journal of Neuroscience Research. 72 (1). ss. 116-24. doi:10.1002/jnr.10569. PMID 12645085. 
  12. ^ Glushakov AV, Glushakova O, Varshney M, Bajpai LK, Sumners C, Laipis PJ, Embury JE, Baker SP, Otero DH, Dennis DM, Seubert CN, Martynyuk AE (Şubat 2005). "Long-term changes in glutamatergic synaptic transmission in phenylketonuria". Brain. 128 (Pt 2). ss. 300-7. doi:10.1093/brain/awh354. PMID 15634735. 
  13. ^ "The ctenophore genome and the evolutionary origins of neural systems". Nature. 510 (7503). Haziran 2014. ss. 109-14. doi:10.1038/nature13400. PMC 4337882 $2. PMID 24847885. 
  14. ^ "Elements of a 'nervous system' in sponges". The Journal of Experimental Biology. 218 (Pt 4). Şubat 2015. ss. 581-91. doi:10.1242/jeb.110817. PMID 25696821. 
  15. ^ "The role of G protein-coupled receptors in the early evolution of neurotransmission and the nervous system". The Journal of Experimental Biology. 218 (Pt 4). Şubat 2015. ss. 562-71. doi:10.1242/jeb.110312. PMID 25696819. 
  16. ^ "The beta-subunit of Caenorhabditis elegans avermectin receptor responds to glycine and is encoded by chromosome 1". Journal of Neurochemistry. 64 (5). Mayıs 1995. ss. 2354-7. doi:10.1046/j.1471-4159.1995.64052354.x. PMID 7536811. 
  17. ^ "Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans". Nature. 371 (6499). Ekim 1994. ss. 707-11. doi:10.1038/371707a0. PMID 7935817. 
  18. ^ "Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin". The Journal of Biological Chemistry. 271 (33). 1996. ss. 20187-91. PMID 8702744. 
  19. ^ "Identification of the genes encoding for putative gamma aminobutyric acid (GABA) and glutamate-gated chloride channel (GluCl) alpha receptor subunits in sea lice (Lepeophtheirus salmonis)". Journal of Veterinary Pharmacology and Therapeutics. 30 (2). Nisan 2007. ss. 163-7. doi:10.1111/j.1365-2885.2007.00823.x. PMID 17348903. 
  20. ^ "l-glutamate as a central neurotransmitter: looking back". Biochemical Society Transactions. 28 (4). 2000. ss. 297-309. doi:10.1042/0300-5127:0280297. PMID 10961913. 
  21. ^ Hayashi, T. (Kasım 1952). "A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics". The Japanese Journal of Physiology. 3 (1). ss. 46-64. ISSN 0021-521X. PMID 13034377. 4 Ekim 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Aralık 2017. 

İlgili Araştırma Makaleleri

Bir alkaloid olan asetilkolin tanımlanan ilk nörotransmitterdir. Merkezî sinir sisteminde yer alan bir kimyasal nörotransmitter (iletici) olmasının yanı sıra birçok organizmanın parasempatik sinir sisteminde yer alır.

Nöronlar arasında veya bir nöron ile başka tür bir hücre arasında iletişimi sağlayan kimyasallara nörotransmitter veya nörotransmiter denir. Sinir sistemi boyunca sinirsel sinyaller bu kimyasal taşıyıcılar yardımıyla iletilir.

<span class="mw-page-title-main">Psikotrop madde</span> beyin fonksiyonunu veya algısını etkileyen kimyasal madde

Psikotrop madde ya da psikoaktif madde, asıl olarak merkezi sinir sisteminde etkisini gösteren ve beynin işlevlerini değiştirerek algıda, ruh hâlinde, bilinçlilikte ve davranışta geçici değişikliklere neden olan kimyasal maddelerdir. Bu ilaçlar eğlence amaçlı olarak bilerek bilinç düzeyini değiştirmek, entojen olarak ritüel ve spiritüel amaçlı, zihni incelemek amaçlı ya da tedavi amaçlı ilaç olarak kullanılabilir.

<span class="mw-page-title-main">İnsan beyni</span> insan sinir sisteminin ana organı

İnsan beyni, insan sinir sisteminin merkezi organıdır ve omurilikle birlikte merkezi sinir sistemini oluşturur.

<span class="mw-page-title-main">Monosodyum glutamat</span> glutamik asidin sodyum tuzu

Sodyum glutamat, MSG veya Çin Tuzu olarak da bilinen monosodyum glutamat; doğal olarak en fazla ortaya çıkan esansiyel olmayan amino asitlerden biri olan glutamik asidin sodyum tuzudur. ABD Gıda ve İlaç Dairesi MSG'yi Genellikle Güvenli Kabul Edilir (GRAS) olarak sınıflandırırken Avrupa Birliği de gıda katkı maddesi olarak sınıflandırmıştır. MSG'nin HS kodu 29224220 olup E numarası E621'dir. MSG glutamatı, diğer gıdalardaki umami tadınının aynısını vermektedir. Kimyasal olarak her ikisi de aynıdır. Endüstriyel gıda üreticileri, diğer tatların genel algısını dengelediği, harmanladığı ve birleştirdiği için MSG'yi aroma artırıcı olarak pazarlamakta ve kullanmaktadır. Monosodyum glutamatın ticari adları arasında AJI-NO-MOTO®, Vetsin ve Ac'cent bulunmaktadır.

<i>Umami</i> Beş temel tattan biri

Umami ; tatlı, ekşi, bitter (acımtırak/buruk) ve tuzlu ile birlikte beş temel tattan biridir. Umami Japonca "hoşa giden tat" anlamına gelen "うま味" kelimesinden alıntıdır. Bu ifade Profesör Kikunae Ikeda tarafından umai (うまい) "lezzetli" ve mi (味) "tat" anlamına geldiği için özellikle seçilmiştir. 旨味 karakteri genel anlamda lezzetli yemekleri tanımlayan bir kanjidir. İnsan dili umami tadının kaynağı olan L glutamat alıcılarına sahiptir. Bu yüzden bilim insanları umaminin tuzdan ayrıldığını düşünürler.

<span class="mw-page-title-main">Glia hücresi</span> merkezi ve çevresel sinir sisteminde yer alan hücrelerin çoğunluğunu oluşturan ve sinir hücresi olmayan hücreler

Nörogliya, gliyal hücreler, yalnızca gliya ya da tutkal, merkezi ve çevresel sinir sisteminde yer alan hücrelerin çoğunluğunu oluşturan ve sinir hücresi olmayan hücreler. Miyelin üretimi ile beyin ve sinir sisteminin, otonom sinir sistemi gibi diğer bölümlerindeki sinir hücreleri için destek, koruma ve homeostaz sağlarlar.

BDNF geninden sentezlenen ve nörotrofin ailesinden bir büyüme faktörü olan beyin türevli nörotrofik faktör bir salgı proteini olup beyinde ve periferde bulunmaktadır. Nöron gelişiminde, canlılığında ve işlevlerinin sürdürülmesinde önemli rol oynamaktadır.

<span class="mw-page-title-main">Kan-beyin bariyeri</span> kan ve beyni birbirinden ayıran yarı eriyebilir zar

Kan-beyin bariyeri (KBB), nöron'ların olduğu merkezi sinir sistemi'nin hücre dışı sıvısı'na dolaşımdaki kan'daki çözünen'lerin seçici olmayan geçişini önleyen endotelyal hücreler'in yüksek düzeyde seçici yarıgeçirgen sınırıdır. Kan beyin bariyeri, kılcal duvar, astrosit uç-ayaklarının kılcal damarı kaplayan endotel hücreleri ve kılcal taban zarı içine gömülü perisit'ler tarafından oluşturulur. Bu sistem, bazı küçük moleküllerin pasif difüzyon ile geçişine ve ayrıca çeşitli besinlerin, iyonların, organik anyonların ve glikoz ve amino asitler gibi makromoleküllerin seçici ve aktif taşınmasına izin verir. Sinirsel fonksiyon için çok önemlidir.

<span class="mw-page-title-main">AMPA reseptörü</span>

α-amino-3-hidroksi-5-metil-4-izoksazolpropiyonik asit (AMPA) reseptörü iyon kanalı özelliğine sahip bir iyonotropik glutamat reseptörüdür. AMPA reseptörü, kainat reseptörünün ve NMDA reseptörünün yanı sıra omurgalılardaki iyonotropik glutamat reseptörlerinin üç ana alt tipinden biridir. Kanal özgül olarak AMPA ile aktive edilebildiğinden dolayı bu ismi almıştır. İlk olarak NMDA ve NMDA-dışı reseptör şeklinde yapılan isimlendirmede NMDA-dışı kümesine dahil edilmiştir. Sonrasında kuiskualat molekülüyle uyarılabilmesi kuiskualat reseptörü ismini almasına neden olmuştur. Kuiskualatın özgül olmadığının anlaşılmasının ardından AMPA'nın keşfiyle son hali olan AMPA reseptörü adını almıştır. Memeli beynindeki hızlı uyarıcı sinaptik iletim büyük ölçüde, AMPA reseptörleri aracılığıyla sağlanmaktadır. Sinapslarda AMPA reseptörlerinin işlevi, gözenek oluşturan çekirdek alt birimleri ve yardımcı alt birimleri tarafından düzenlenmektedir. Her yardımcı alt birim, trafiğin düzenlenmesinden iyon kanalı geçit kinetiğinin şekillendirilmesine kadar değişen etkiler yapabilmektedir. AMPA reseptörleri tetramerik yapıya sahiptir. Nöronal plastisitenin ifadesi için kritik öneme sahip olduğu bilinmektedir. AMPA reseptörlerinin kinetik ve iletkenlik özellikleri, üretimleri sırasında ortaya koyulmaktadır. Transkripsiyon sonrası RNA düzenleme, ekleme varyasyonu ile translasyon sonrası modifikasyon ve alt birim kompozisyonu ile düzenlenmektedir. AMPA reseptörünün birleştirilmesi ve trafiklenmesi geniş bir yardımcı alt birim repertuvarına bağlıdır.

<span class="mw-page-title-main">Kannabinoid</span>

Kannabinoidler, beyindeki nörotransmitter salınımını değiştiren hücrelerdeki kannabinoid reseptörleri üzerinde etkili olan çeşitli kimyasal bileşikleri kapsayan bir sınıftır. Bu reseptör proteinleri için ligandlar, endokannabinoidleri, fitokannabinoidleri ve sentetik kannabinoidleri içerir. En önemli kannabinoid olan tetrahidrokannabinol (THC), esrarda bulunan birincil psikoaktif maddedir. Kannabidiol (CBD) bitkinin bir başka önemli bileşenidir. Çeşitli etkiler gösteren, esrardan izole edilmiş en az 113 farklı kannabinoid vardır.

<span class="mw-page-title-main">İnternöron</span>

İnternöron insan vücudunda bulunan geniş bir nöron sınıfıdır. İnternöronlar sinirsel devreleri oluşturur, duyusal ya da motor nöronlar ve merkezi sinir sistemi (MSS) arasındaki iletişimi sağlar. Yetişkin memeli beyinlerinde reflekslerde, nöronal salınımlarda ve nörojenezde işlevi vardır.

Nörofarmakoloji, ilaçların sinir sistemindeki hücresel işlevini ve davranışı etkileyen nöral mekanizmaları araştıran bilim dalıdır. Nörofarmakolojinin davranışsal ve moleküler olmak üzere iki ana alt dalı vardır. Davranışsal nörofarmakoloji, ilaç bağımlılığı ve bağımlılığının insan beynini nasıl etkilediğinin incelenmesi de dahil olmak üzere ilaçların insan davranışını nasıl etkilediğine odaklanır. Moleküler nörofarmakoloji, nöronların ve nörokimyasal etkileşimleri incelemenin yanı sıra nörolojik fonksiyon üzerinde faydalı etkileri olan ilaçların geliştirilmesi genel amacını taşır. Bu alanların her ikisi de yakından bağlantılıdır, çünkü her ikisi de merkezi ve periferik sinir sistemlerindeki nörotransmitterler, nöropeptitler, nörohormonlar, nöromodülatörler, enzimler, ikinci haberciler, ortak taşıyıcılar, iyon kanalları ve reseptör proteinlerinin etkileşimleri ile ilgilidir. Bu etkileşimleri inceleyen araştırmacılar, ağrı, Parkinson hastalığı ve Alzheimer hastalığı gibi nörodejeneratif hastalıklar, psikolojik bozukluklar, bağımlılık gibi birçok farklı nörolojik bozukluğu tedavi etmek için ilaçlar geliştirirler.

Beyin hücreleri,beynin işlevsel dokusunu oluşturur. Beyin dokusunun geri kalanı, kan damarlarını içeren, stroma adı verilen yapıdır. Beyindeki iki ana hücre tipi, sinir hücreleri olarak da bilinen nöronlar ve nöroglia olarak da bilinen glial hücrelerdir.

Metabotropik reseptör, hücre aktivitesini düzenlemek için bir dizi metabolik adımı başlatan membran reseptörü tipidir. Sinir sisteminde iki tür reseptör vardır:metabotropik ve iyonotropik reseptörler. İyonotropik reseptörler bir iyon kanalında porlar oluştururken, metabotropik reseptörler, G proteinleri gibi sinyal iletim mekanizmaları aracılığıyla dolaylı olarak iyon kanallarına bağlanır.

<span class="mw-page-title-main">NMDA reseptörü</span>

N-metil-D-aspartat (NMDA) reseptörü, iyon kanalı özelliğine sahip bir glutamat reseptörüdür. NMDA molekülü özgül olarak kanalı aktive edebildiği için bu ismi almıştır. Katyonlara geçirgen iyonotropik glutamat reseptör ailesinin bir üyesidir. Lisin ve D-serin, özel bir bölge aracılığıyla reseptörü uyarabilmektedir. Bu moleküller aracılığıyla reseptörün işlevi düzenlenmektedir. Reseptör, alt birimine göre Mg2+ ve Zn2+ ile bloklanabilmektedir. Bu iyonlar kanalın kinetiği üzerinden etkisini göstermektedir. Reseptör işlevi, yavaş kanal açılması ve aktivasyonun sonlanması ile karakterize edilmektedir. Ortaya çıkan katyon akışı, sinyal iletim yollarını aktif hale getirmektedir. Ayrıca, merkezi sinir sisteminin çeşitli bölgelerinde ifade edilmektedir. Sinaptik plastisite, öğrenme ve hafıza gibi sinir hücresi ile ilgili işlevlerde de anahtar fizyolojik roller oynamaktadır. Bununla birlikte, farklı merkezi sinir sistemi hastalıklarının patofizyolojisinde yer aldığı gösterilmiştir. Hastalıklarla ilişkili genomik varyasyon için bir lokus olarak tanımlanmıştır.

Talampanel epilepsi, malign gliomalar, ve amyotrofik lateral skleroz (ALS) tedavisi için araştırılmış bir ilaçtır.

Sinirbilimde Golgi hücreleri, beyinciğin granüler tabakasında bulunan inhibitör internöronlardır. İlk olarak 1964'te inhibitör olarak tanımlandılar. Aynı zamanda, inhibitör internöronun anatomik olarak tanımlandığı, inhibitör geribildirim ağının ilk örneğiydi.Bu hücreler, granül hücrelerin ve tek kutuplu fırça hücrelerinin dendritinde sinaps yapar. Yosunlu liflerden, ayrıca granül hücrelerde sinaps yapan ve uzun granül hücre aksonları olan paralel liflerden uyarıcı girdi alırlar. Böylece bu devre, granül hücrelerinin ileri besleme ve geri besleme inhibisyonuna izin verir.

<span class="mw-page-title-main">Uyaran (fizyoloji)</span> fizyolojide, iç veya dış çevrede tespit edilebilir bir değişiklik

Fizyolojide uyaran, bir organizmanın iç veya dış çevresinin fiziksel veya kimyasal yapısında tespit edilebilir bir değişikliktir. Bir organizmanın veya organın uygun bir tepki verebilmesi için dış uyaranları tespit etme yeteneğine duyarlılık (uyarılabilirlik) denir. Duyusal reseptörler, deride bulunan dokunma reseptörleri veya gözdeki ışık reseptörlerinde olduğu gibi vücudun dışından ve kemoreseptörler ve mekanoreseptörlerde olduğu gibi vücudun içinden bilgi alabilir. Bir uyaran bir duyusal reseptör tarafından algılandığında, uyaran transdüksiyonu yoluyla bir refleks ortaya çıkarabilir. Bir iç uyaran genellikle homeostatik kontrol sisteminin ilk bileşenidir. Dış uyaranlar, savaş ya da kaç yanıtında olduğu gibi vücutta sistemik yanıtlar üretebilir. Bir uyaranın yüksek olasılıkla algılanabilmesi için güç seviyesinin mutlak eşiği aşması gerekir; eğer bir sinyal eşiğe ulaşırsa, bilgi merkezi sinir sistemine (MSS) iletilir, burada entegre edilir ve nasıl tepki verileceğine dair bir karar verilir. Uyaranlar genellikle vücudun tepki vermesine neden olsa da, bir sinyalin bir tepkiye neden olup olmayacağını nihai olarak belirleyen MSS'dir.