İçeriğe atla

Gerçel analiz

Gerçel analiz ya da bilinen diğer ismiyle reel analiz, matematiksel analizin bir dalıdır. Bu dal, gerçek sayılar ve bu sayılardan türetilen yapılarla ilgili temel kavramları ele alır. Ana konuları arasında diziler, seriler, limitler, süreklilik, türev, integral ve fonksiyon dizileri yer alır. Gerçek analizin incelenmesi, matematiğin diğer alanları için temel araçlar ve yöntemler sağlar.

Temel Kavramlar

Listelenen teoremler ve kavramlar, gerçek analizin genel yapısını oluşturur. Gerçek analiz, matematiksel düşünce ve problem çözme yeteneğinin gelişimi için kritik bir alandır ve matematiğin diğer dallarıyla güçlü bağları vardır.

Gerçek Analizdeki Önemli Teoremler ve Kavramlar

1. Limit ve Süreklilik Teoremleri: Fonksiyonların limitleri ve süreklilikleri üzerine çalışır. Bu, analizin temelini oluşturur.

2. Türev ve İntegral Teoremleri: Türev ve integralin temel özellikleri ve bunların ilişkisi, temel türev ve integral teoremleri ile incelenir.

3. Bolzano-Weierstrass Teoremi: Her sınırlı dizinin bir yakınsak alt dizisi olduğunu belirtir.

4. Cauchy Kriteri: Bir dizinin yakınsak olup olmadığını test etmek için kullanılır.

5. Riemann ve Lebesgue İntegralleri: İntegral alma yöntemleri ve bu yöntemlerin özellikleri.

6. Dizi ve Seri Teoremleri: Dizilerin ve serilerin yakınsaklığı ve bu konseptlerin analizdeki uygulamaları.

7. Uniform Yakınsaklık: Fonksiyon dizilerinin yakınsaklık özellikleri ve analizdeki önemi.

8. Ara Değer Teoremi ve Ortalama Değer Teoremi: Fonksiyonların ara değerlerini ve ortalama değerlerini inceleyen temel teoremler.

Öğrenme Haritası

Reel analizin öğrenme haritası aşağıdaki şekilde tanımlanabilir.

Temel Kavramlar ve Tanımlar

1. Reel Sayılar ve Özellikleri

  • Temel işlemler
  • Reel sayıların yapısal özellikleri

2. Diziler ve Seriler

  • Limit kavramı
  • Yakınsaklık ve ıraksaklık
  • Özel seriler

3. Limit ve Süreklilik

  • Fonksiyonların limitleri
  • Süreklilik
  • Sürekliliğin özellikleri

4. Topoloji

  • Açık ve kapalı kümeler
  • Kompaktlık
  • Bağlantılılık

Türev ve İntegral Hesabı

1. Türev

  • Fonksiyonların türevi
  • Yüksek dereceden türevler
  • Türevin uygulamaları

2. Riemann İntegrali

  • Belirli ve belirsiz integraller
  • Temel teoremler

3. İleri İntegral Kavramları

  • İmproper integraller
  • İntegral hesaplamada yaklaşımlar

İleri Kavramlar ve Teoremler

1. Taylor Serileri ve Yaklaşımları

  • Fonksiyonların Taylor serisi ile yaklaştırılması
  • Hata analizi

2. Fourier Serileri ve Dönüşümleri

  • Periyodik fonksiyonların Fourier serileri
  • Fourier dönüşümleri

3. Fonksiyonel Diziler ve Seriler

  • Dizi ve serilerin yakınsaklığı
  • Uniform yakınsaklık

İleri Düzey Konular

1. Ölçü Teorisi ve Lebesgue İntegrali

  • Modern integral teorisinin temelleri
  • Ölçülebilir fonksiyonlar

2. L^p Uzayları ve Hilbert Uzayları

  • Fonksiyon uzayları
  • Normlar

3. Diferansiyel Denklemler

  • Temel diferansiyel denklemler
  • Çözüm yöntemleri

4. Karmaşık Analize Giriş

  • Reel analizin karmaşık sayılar üzerindeki uygulamaları

İleri Türev ve İntegral Kavramları

1. Yüksek Dereceden Türevler

  • Uygulamalar

2. Çoklu İntegraller

  • İki veya daha fazla değişkenli fonksiyonların integralleri

3. Yüzey ve Hacim İntegralleri

  • Geometrik uygulamaları olan integraller

4. Green, Gauss ve Stokes Teoremleri

  • İntegral hesabının temel teoremleri

Fonksiyon Uzayları ve Operatör Teorisi

1. Banach ve Hilbert Uzayları

  • Fonksiyon uzayları
  • Uzayların özellikleri

2. Lineer Operatörler ve Fonksiyonel Analiz

  • Fonksiyon uzayları üzerindeki operatörler

3. Normlar ve İç Çarpım Uzayları

  • Fonksiyonların büyüklüklerinin ölçülmesi

Ölçü Teorisi ve İntegrasyon

1. Lebesgue Ölçüsü ve İntegrali

  • Riemann integraline alternatif yaklaşım

2. Fatou'nun Leması ve Dominated Convergence Teoremi

  • İntegrallerin limitlerinin alınması

3. Fubini Teoremi ve Tonelli Teoremi

  • Çoklu integrallerin hesaplanması

Uygulamalar ve İleri Araştırma Alanları

1. Sistemler Matematiksel Modellemeleri

  • Fiziksel, biyolojik ve kimyasal olaylar gibi doğa bilimlerine konu olayların ve sistemlerin matematiksel modellerinin oluşturulması

2. Optimizasyon Teorisi

3. Finansal Matematik ve Ekonomi

  •  Ekonomik teoriler ve modellerin matematiksel analizi

Ayrıca bakınız

Kaynakça

  • Andrew Browder, Mathematical Analysis: An Introduction.
  • Bartle and Sherbert, Introduction to Real Analysis.
  • Stephen Abbott, Understanding Analysis.
  • Walter Rudin, Principles of Mathematical Analysis.
  • Frank Dangello and Michael Seyfried, Introductory Real Analysis.
  • Andrew J Watts, Real Analysis Explained

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

Sinyaller ve sistemler kavram ve teorisi diğer birçok mühendislik ve bilim dallarıyla birlikte, elektrik ve elektronik mühendisliğinin hemen her alanında ve Biyomedikal mühendisliğinin tıbbi cihazlar ve biyoelektrik gibi elektrikle ilgilenen alt disiplinlerinde gerekli olup, haberleşme, EKG, EEG gibi tıbbi cihazlar, devreler ve sistemler ve kontrol sistemleri gibi alanlardaki ileri düzeyde çalışmaların matematiksel temelini oluşturur.

<span class="mw-page-title-main">Karl Weierstrass</span> Alman matematikçi (1815-1897)

Karl Theodor Wilhelm Weierstraß, Alman öğretmen ve matematikçidir.

<span class="mw-page-title-main">Henri Léon Lebesgue</span> Fransız matematikçi (1875 – 1941)

Henri Léon Lebesgue, 17. yüzyıl integral kavramının-bir eksen ile o eksen için tanımlanmış bir fonksiyonun eğrisi arasındaki alanı toplamak- bir genellemesi olan entegrasyon teorisi ile tanınan Fransız matematikçiydi. Teorisi ilk olarak 1902'de Nancy Üniversitesi'ndeki Intégrale, longueur, aire tezinde yayınlandı.

<span class="mw-page-title-main">Peter Gustav Lejeune Dirichlet</span>

Johann Peter Gustav Lejeune Dirichlet, sayı teorisi ve Fourier serileri teorisi ile matematiksel analizdeki diğer konulara derin katkılarda bulunan Alman bir matematikçiydi. Bir fonksiyonun modern biçimsel tanımını veren ilk matematikçilerden biri olarak kabul edilmektedir.

Matematiksel analiz, hesaplamanın esas olduğu matematiğin en önemli kolu. Limit kavramı üzerine kurulmuştur. Eğri, yüzey ve fizik problemlerini bünyesine alarak gelişti. Bu tür konular, özel veya farklı değer kümeleriyle meşgul olan cebir ve aritmetiğin dışındaki problemlerdir. Bununla beraber, sonsuz kümelerin limit değerlerini kural haline getirme işlemlerini ihtiva ederler.

<span class="mw-page-title-main">Kalkülüs</span>

Başlangıçta sonsuz küçük hesap veya "sonsuz küçüklerin hesabı" olarak adlandırılan kalkülüs, geometrinin şekillerle çalışması ve cebirin aritmetik işlemlerin genellemelerinin incelenmesi gibi, kalkülüs sürekli değişimin matematiksel çalışmasıdır.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

Ana başlıklarına göre karmaşık analiz konuları:

<span class="mw-page-title-main">Morera teoremi</span> Matematik terimi

Matematiğin bir dalı olan karmaşık analizde, Giacinto Morera'nın ardından adlandırılan Morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için kullanılan temel bir sonuçtur. İtalyan matematikçi Giacinto Morera'nın adını taşımaktadır.

<span class="mw-page-title-main">Harmonik fonksiyon</span>

Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rn'nin U gibi açık bir kümesi üzerinde f : UR şeklinde tanımlı, Laplace denklemini, yani

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

Matematiğin vektör uzaylarıyla ve bu uzayların üzerinde tanımlı operatörlerle uğraşan bir alt dalı. Kökleri fonksiyon uzayları kuramının geliştirilmesine; hatta diferansiyel ve integral denklemlerinin çalışılmasına kadar gitmektedir. Özelde mesela Fourier dönüşümü gibi fonksiyon dönüşümlerinin çalışılmasında da kullanılmıştır. Fonksiyonel kelimesinin ilk kullanımı varyasyonlar hesabına kadar takip edilebilir. Ancak, genel anlamda kullanımı İtalyan matematikçi ve fizikçi Vito Volterra'ya atfedilmektedir. Yine de temeli büyük ölçüde Stefan Banach ve çevresindeki Polonyalı matematikçiler tarafından atılmış ve geliştirilmiştir. Çağdaş anlamda, fonksiyonel analiz bir topolojiye sahip vektör uzaylarının çalışılmasında, özellikle sonsuz boyutlu uzaylarda, gözükmektedir. Tanımdan yola çıkılarak fonksiyon analizinin sonlu boyutlu uzaylar kuramını da içerdiği düşünülebilir; ancak bu uzayları bir topolojisi olmadan inceleyen alan doğrusal cebirdir. Fonksiyonel analizin önemli bir işlevlerinden biri de ölçü, integral ve olasılık kuramı gibi genel kuramları sonsuz boyutlu uzaylara yaymaktır ki bu işlevin özelde adı sonsuz boyutlu analizdir.

<span class="mw-page-title-main">Lebesgue integrali</span>

Matematikte Lebesgue entegrasyonu bir fonksiyonun entegrasyonunun genel teorisi için genel bir ölçü ile ilgili bir işlev, gerçek hat veya Lebesgue ölçümü bakımından daha yüksek boyutlu Öklid uzayının bir alt etki alanı ile tanımlanan bütünleşme özel durum anlamına gelir. Lebesgue entegrasyonu gerçek analizde önemli bir rol oynar, olasılık aksiyomatik teorisi ve matematik bilimleri için birçok diğer alanlardaki hesaplamalara yardımcı olur.

Bu sayfa teoremlerin bir listesidir. Ayrıca bakınız:

Bu, matematiğin bir alt dalı ve matematiksel analizin giriş kısmı olan kalkülüs (hesap) konularının bir listesidir.

Matematik konularının listesi, matematik ile ilgili çeşitli konuları kapsar. Bu listelerden bazıları yüzlerce makaleye bağlantı içerir; bazıları sadece birkaç tane ile bağlantılıdır. Bu makale, aynı içeriği, göz atmaya daha uygun bir şekilde organize halde bir araya getirmektedir. Listeler, temel ve ileri matematik, metodoloji, matematiksel ifadeler, integraller, genel kavramlar, matematiksel nesneler ve referans tablolarının özelliklerini kapsar. Ayrıca insanların adını taşıyan denklemleri, matematiksel toplulukları, matematikçileri, matematik dergilerini ve meta listeleri de kapsar.

Holomorf fonksiyonlar karmaşık analizin temel çalışma araçlarından biridir. Bu fonksiyonlar karmaşık düzlemin yani C'nin açık bir altkümesinde tanımlı, bu altkümedeki her noktada karmaşık anlamda türevli ve aldığı değerler yine C içinde olan fonksiyonlardır.

<span class="mw-page-title-main">Asal sayı teoremi</span> sayılar teorisinde bir teorem

Asal sayı teoremi (PNT), asal sayıların pozitif tam sayılar arasındaki asimptotik dağılımını tanımlar. Bunun meydana gelme hızını tam olarak ölçerek, asal sayıların büyüdükçe daha az yaygın hale geldiği şeklindeki sezgisel fikri resmîleştirir. Teorem, 1896'da Jacques Hadamard ve Charles Jean de la Vallée Poussin tarafından bağımsız olarak Bernhard Riemann'ın ortaya attığı fikirler kullanılarak kanıtlandı.

<span class="mw-page-title-main">Rolle teoremi</span> reel türevlenebilir bir fonksiyonun iki eşit değeri arasındaki durağan noktalar üzerine bir reel analiz teoremi

Kalkülüste, Rolle teoremi veya Rolle lemması temel olarak, iki farklı noktada eşit değerlere sahip herhangi bir gerçel değerli türevlenebilir fonksiyonun, aralarında bir yerde, teğet doğrusunun eğiminin sıfır olduğu en az bir noktaya sahip olması gerektiğini belirtir. Böyle bir nokta, durağan nokta olarak bilinir. Bu nokta, fonksiyonun birinci türevinin sıfır olduğu noktadır. Teorem adını Michel Rolle'den almıştır.