İçeriğe atla

Gerçek anomali

P noktasının gerçek anomalisi f açısıdır. Elipsin merkezi C noktasıdır ve odak noktası F noktasıdır.

Gerçek anomali, gök mekaniğinde Kepler yörüngesinde hareket etmekte olan bir cismin pozisyonunu belirleyen açısal bir parametredir. Gerçek anomali, bir yörüngedeki çeşitli noktaların konumlarını tanımlamak için kullanılan bir terimdir.[1] Enberi noktası yönü ile elipsin ada odağından görünen cismin mevcut konumu yani nesnenin etrafında döndüğü nokta arasındaki açıyı göstermektedir.

Gerçek anomali genellikle ν ya da θ Yunan harfleri veya f sembolüyle gösterilmekte olup, sıklıkla 0-360° (0–2πc) ölçeğinde sınırlanmıştır.

Gerçek anomali f yörünge üzerindeki bir pozisyonu tanımlayan üç açısal parametre/anomalilikten birisidir. Kalan diğer iki anomalilik ise dışmerkezlik anomalisi ve ortalama anomali/ayrıklıktır.

Formüller

Durum vektörlerinden

Eliptik yörüngeler için gerçek anomali yörünge durum vektörlerinden şu şekilde hesaplanabilir:

(eğer rv < 0 ise ν 2πν ile değiştirilir.)

Bu hesaplamada;

  • v, yörüngedeki cismin yörünge hız vektörü,
  • e dışmerkezlik vektörüdür,
  • r, yörüngedeki cismin yörünge konum vektörüdür (şekilde FP bölgesi).

Dairesel yörünge

Dairesel yörüngeler için gerçek anomali değeri tanımsızdır. Bunun nedeni dairesel yörüngelerin tanımlı bir enberi noktası bulunmamasıdır. Bunun yerine enlem açısı u parametresi kullanılır:

(eğer rz < 0 ise u 2πu olarak değiştirilir.)

Bu hesaplamada:

  • n, yükselen düğüm açısına kadar olan bir vektördür (yani n'nin z bileşeni sıfırdır).
  • rz , yörünge konum vektörü olarak gösterilen r'nin z bileşenidir

Dairesel yörüngeler için enlem açısının sıfır eğimliliği de tanımsızdır. Bunun nedeni düğüm noktalarının parametrelerinin tanımlanamamasıdır. Bu durumda gerçek boylam değeri kullanılır:

(eğer vx > 0 ise l 2πl olarak değiştirilir.)

Bu hesaplamada:

  • rx, yörünge konum vektörü olarak gösterilen r'nin x bileşenidir
  • vx, yörünge hız vektörü olarak gösterilen v'nin x bileşenidir.

Eksantrik (dış merkezlik) anomaliden

Gerçek anomali ν ile eksantrik anomali arasındaki ilişki şöyledir:

veya sinüs [2] ve tanjant kullanılarak:

ya da buna eşit olan:

böylece

formülü elde edilir.

Diğer bir ifadeyle, bu eşitliğin bir türü sayısal sorunlardan kaçınılarak türetilmektedir.[3] Argümanlar yani açılar birbirine yakın olduğunda, iki teğet sonsuz hale gelmektedir. İlave olarak, ve her durumda aynı çeyreklikte olacağından dolayı herhangi bir işaret sorunu yaşanmaz.

Neresi

böylece

formülü elde edilir.

Ortalama anomaliden

Gerçek anomali Fourier serisi kullanılmak suretiyle doğrudan doğruya ortalama anomaliden:

Bessel fonksiyonu ve parametresiyle birlikte türetilebilmektedir.[4]

veya daha yüksek ( ) şekilde verilen tüm varsayımlar göz ardı edilirse,[4][5][6] aşağıdaki şekilde de yazılabilir.

Tutarlılık nedeniyle bu biçimdeki bir hesaplamanın dış merkezlik değerinin küçük olduğu durumlarda sınırlı olduğu unutulmamalıdır.

ifadesi merkez denklemi olarak bilinmektedir ki burada genişlemeye ilişkin daha fazla ayrıntıya yer verilmiştir.

Gerçek anomaliden yarıçap bulunması

yörüngedeki cisim ile çekim odağı arasındaki mesafe olarak tanımlanan yarıçap aşağıdaki formül kullanılarak gerçek anomali değerinden elde edilebilir:

Bu hesaplamada yer alan a değeri yarı büyük ekseni ihtiva etmektedir.

Ayrıca bakınız

Kaynakça

  1. ^ "Planetary Orbits - NASA Science". science.nasa.gov (İngilizce). 13 Kasım 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Kasım 2023. 
  2. ^ Fundamentals of Astrodynamics and Applications by David A. Vallado
  3. ^ Broucke, R.; Cefola, P. (1973). "A Note on the Relations between True and Eccentric Anomalies in the Two-Body Problem". Celestial Mechanics. 7 (3). ss. 388-389. Bibcode:1973CeMec...7..388B. doi:10.1007/BF01227859. ISSN 0008-8714. 
  4. ^ a b Battin, R.H. (1999). An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series. American Institute of Aeronautics & Astronautics. s. 212 (Eq. (5.32)). ISBN 978-1-60086-026-3. 13 Kasım 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 2 Ağustos 2022. 
  5. ^ Smart, W. M. (1977). Textbook on Spherical Astronomy (PDF). s. 120 (Eq. (87)). 22 Mart 2023 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 13 Kasım 2023. 
  6. ^ Roy, A.E. (2005). Orbital Motion. 4. Bristol, UK; Philadelphia, PA: Institute of Physics (IoP). s. 78 (Eq. (4.65)). ISBN 0750310154. 15 Mayıs 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Ağustos 2020. 

İlave okuma

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">İntegral tablosu</span> Vikimedya liste maddesi

İntegral, Matematikteki temel işlemlerden biridir. Bu maddede yaygın integrallerin hesaplanışını bulacaksınız.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Parabolik yörünge</span> Dış merkezliği 1 olan yörüngeler

Parabolik yörünge veya kaçış yörüngesi, dış merkezliği 1 olan yörüngelerdir. Yörünge üzerinde bulunan cismin hızı kaçış hızına eşittir ve dolayısıyla herhangi bir gezegenin yer çekimsel kuvvetinden kurtulabilirler. Yörünge üzerindeki cismin hızı arttırıldığı takdirde, hiperbolik yörüngeye geçer.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

<span class="mw-page-title-main">Planck yasası</span> belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eden terim

Planck yasası belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eder. Yasa 1900 yılında Max Planck bu ismi önerdikten sonra isimlendirilmiştir. Planck yasası modern fiziğin ve kuantum teorisinin öncül bir sonucudur.

Aristarchus eşitsizliği, eğer ile dar açılar ve ise,

.
<span class="mw-page-title-main">Ortalama ayrıklık</span> uzayda bir nesnenin yörüngesini belirtmek için kullanılan yörünge elemanlarından biri

Gök mekaniğinde ortalama ayrıklık, bir eliptik yörünge periyodunun, yörüngedeki cismin periapsis'i geçmesinden bu yana geçen, klasik iki cisim probleminde o cismin konumunun hesaplanmasında kullanılabilecek bir açı olarak ifade edilen kesiridir. Bu, hayali bir cismin, eliptik yörüngesindeki gerçek cisimle aynı yörünge peryodunda, sabit hızla dairesel bir yörüngede hareket etmesi durumunda sahip olacağı çevre merkezden açısal uzaklıktır.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.