İçeriğe atla

Georg Cantor

Kontrol Edilmiş
Georg Cantor
Georg Cantor
Doğum3 Mart 1845(1845-03-03)
Sankt-Peterburg, Rusya
Ölüm6 Ocak 1918 (72 yaşında)
Halle, Almanya
Mezun olduğu okul(lar)ETH Zürih
Berlin Üniversitesi
Kariyeri
DalıMatematik
Çalıştığı kurumlarHalle Üniversitesi

Georg Ferdinand Ludwig Philipp Cantor (3 Mart 1845, Sankt Petersburg, Rusya - 6 Ocak 1918, Halle an de Saale, Almanya), Alman matematikçi. Kümeler kuramının kurucusudur. Kümeler arasında birebir eşlemenin önemini ortaya koydu, "sonsuz küme" kavramına matematiksel bir tanım getirdi ve gerçel sayıların sonsuzluğunun doğal sayıların sonsuzluğundan "daha büyük" olduğunu ispatladı. Ayrıca kardinal sayı ve ordinal sayı kavramlarını ortaya atmış ve bu sayıların aritmetiğini tanımlamıştır. Cantor'un buluşlarının matematik ve felsefede önemli yeri vardır.

Cantor'un "sonsuzötesi sayılar" fikri sezgilerimizle ters düştüğü için, zamanın matematikçileri tarafından yoğun şekilde eleştirilmiştir. Henri Poincaré, Cantor'un fikirlerini "matematiği istila eden korkunç bir hastalık" olarak nitelendirmiş, Leopold Kronecker ise Cantor'u "şarlatan"lıkla suçlamıştır. Cantor'un 1884'ten hayatının sonuna kadar yaşadığı depresyon nöbetlerinin, kısmen bu saldırılardan kaynaklandığı iddia edilmişse de, nöbetlerin asıl sebebi muhtemelen bipolar bozukluktur.

Günümüzde, Cantor'un fikirleri matematikçilerin büyük çoğunluğu tarafından doğru kabul edilmekte ve matematik tarihinin en önemli paradigma değişimlerinden biri olarak tanınmaktadır. David Hilbert, "Cantor'un yarattığı cennetten bizi kimse kovamayacaktır" diyerek Cantor'un katkılarının önemini vurgulamıştır.

Hayatı

Çocukluğu ve gençliği

Cantor, 3 Mart 1845'te, Rusya'nın o zamanki başkenti Sankt-Peterburg'da dünyaya geldi. Babası Georg Waldemar Cantor, Danimarka kökenli bir tüccardı ve St. Petersburg borsasında simsarlık yapıyordu. Annesi Maria Anna Cantor ise Avusturya kökenliydi ve yetenekli bir müzisyendi.

Babanın sağlığı bozulunca, aile 1856'da Almanya'nın Frankfurt kentine taşındı. Cantor, Darmstadt'ta bir yatılı liseye yazıldı ve 1860'ta buradan yüksek başarıyla mezun oldu. 1862'de ise Zürih Politeknik Enstitüsü'ne (bugün ETH Zürih) girerek matematik okumaya başladı. Bir yıl sonra babası ölünce Almanya'ya döndü ve Berlin Üniversitesi'ne yazıldı. Burada, zamanın büyük matematikçileri Ernst Kummer, Karl Weierstrass ve Leopold Kronecker'den dersler aldı. 1867'de sayılar kuramı üzerine yazdığı tezini sunarak üniversiteden mezun oldu.

Bir süre Berlin'deki bir kız okulunda öğretmenlik yaptıktan sonra, 1869'da Halle Üniversitesi'nde doçent olarak çalışmaya başladı.

Orta Yaşları

Cantor, Halle Üniversitesi'ndeki meslekdaşı Eduard Heine'nin etkisiyle sayılar kuramından uzaklaşıp analizle ilgilenmeye başladı. 1870'te, bir fonksiyonun birden fazla trigonometrik seri açılımı olamayacağını kanıtlayarak adını duyurdu. Cantor'dan önce, Heine'nin yanı sıra Lejeune Dirichlet, Rudolph Lipschitz ve Bernhard Riemann gibi pek çok matematikçi bu problemle uğraşmış ama sonuca ulaşamamıştı. 1870-72 arasında Cantor trigonometrik serilere ilişkin bir dizi makale yayımladı ve 1872'de Sıradışı Profesör unvanını kazandı. Aynı sene yazışmaya başladığı meslekdaşı Richard Dedekind, gerçel sayıları "Dedekind kesitleri" olarak tanımladığı meşhur makalesinde, Cantor'un trigonometrik seri makalelerinden birini referans olarak gösterdi.

Cantor 1873'te rasyonel sayıların doğal sayılarla birebir eşlenebildiğini, bir başka deyişle rasyonel sayıların sayılabilir sonsuzlukta olduğunu kanıtladı. Aynı yıl, cebirsel sayıların (yani katsayıları tam sayı olan herhangi bir polinomun kökü olarak yazılabilen gerçel sayıların) da sayılabilir olduğunu kanıtladı. 1874'te ise gerçel sayıların tamamının sayılabilir olmadığını gösterdi. Böylece gerçel sayıların çok küçük bir kısmının cebirsel olduğu, neredeyse tamamının aşkın sayılar olduğu ortaya çıktı.

Cantor bundan sonra, boyut sayıları farklı olan kümelerin, mesela bir birim uzunluğundaki (tek boyutlu) bir doğru parçasıyla bir birimkare alana sahip (iki boyutlu) bir karenin, birebir eşlenip eşlenemeyeceğini araştırmaya başladı. 1877'de bulduğu sonuç oldukça şaşırtıcıydı: Bir birim uzunluğunda bir doğru parçasının üzerindeki noktalar, p boyutlu uzayın tüm noktalarıyla birebir eşlenebiliyordu. Arkadaşı Dedekind'e bu sonuçtan bahsederken "Je le vois, mais je ne le crois pas!" ("Görüyorum, ama inanmıyorum!") diye yazdı.

1878'te yazdığı bir makalede, birebir eşleme, sayılabilirlik ve boyut kavramlarına açıklık getirdi. Cantor, kendi fikirlerine açıkça karşı çıkan Kronecker'in muhalefetinden korktuğu için bu makaleyi yayımlanmadan önce geri çekmek istemiş, Dedekind ve Weierstrass'ın desteğiyle bundan vazgeçmişti.

1879 ve 1884 arasında yayımladığı altı makaleyle, kümeler kuramının temellerini attı, "sonsuzötesi" (kardinal ve ordinal) sayılar fikrini anlattı. Bu makaleleri yayımlayan Mathematische Annalen dergisinin editörleri, aslında büyük bir cesaret örneği sergiliyorlardı, çünkü Cantor'un fikirleri, Kronecker'un başını çektiği bir grup nüfuzlu matematikçi tarafından şiddetle eleştiriliyor ve hatalı bir düşünce şekli olarak yorumlanıyordu. Bu kuvvetli muhalefetin farkında olan Cantor, makalelerinde eleştirilere uzun uzun cevap vermeye özen gösteriyordu.

Mayıs 1884'te ilk ağır depresyon nöbetini geçiren Cantor, birkaç hafta içinde kendini toparladıysa da matematiğe dönmek için yeterli özgüveni bulamadığından, felsefe ve edebiyatla ilgilenmeye başladı. Sonsuzluk ve kümeler hakkında kendi geliştirdiği fikirlerin felsefi ve teolojik sonuçlarıyla ilgileniyor ve bu konuda pek çok filozofla yazışıyordu. Bu yazışmaların bir kısmını 1888'de yayımladı. Edebiyatta ise Shakespeare'in tiyatro eserlerini inceliyor, bunların aslında Shakespeare değil Francis Bacon tarafından yazıldığını kanıtlamaya çalışıyordu. Shakespeare ve Bacon konusundaki bu garip saplantısından hayatı boyunca vazgeçmeyecek, bu konuyla ilgili araştırmalarını 1896 ve 1897'de iki kitapçık halinde yayımlayacaktı. (Saplantının sebebi büyük ihtimalle bipolar bozukluk idi.)

1890'da, Alman Matematikçiler Cemiyeti'nin (Deutsche Mathematiker-Vereinigung) kurucularından biri oldu ve bu cemiyetin 1891'deki ilk toplantısına başkanlık etti. Bu toplantıya, bir türlü iyi geçinemediği Leopold Kronecker'i de davet ettiyse de, karısı bir dağcılık kazasında ciddi şekilde yaralanınca Kronecker toplantıya katılamadı. Bu toplantıda Cantor, yeni kurulan Cemiyet'in ilk başkanı seçildi.

Yaşlılığı ve ölümü

Cantor, son önemli makalesini 1895 ve 1897'de iki kısım halinde yayımladı. Bu makalede, kümeler kuramıyla ilgili bugün alışık olduğumuz bazı kavramları (altkümeler gibi) tanımlıyor, kardinal ve ordinal aritmetiği tekrar gözden geçiriyordu. Cantor bu makalesinde süreklilik hipotezinin de bir kanıtını sunmak istemiş, ama çok uğraştığı halde kanıtı bulamamıştı. (Süreklilik hipotezi, eleman sayısı olarak doğal sayılardan büyük, gerçel sayılardan küçük bir kümenin varolmadığını söyler. Kurt Gödel ve Paul Cohen 20. yüzyılda göstermişlerdir ki, geleneksel kümeler kuramı aksiyomlarından yola çıkılarak bu hipotezin doğruluğu da yanlışlığı da kanıtlanamaz.)

Aralık 1899'da en küçük oğlunun ani ölümüyle bir kez daha depresyona girdi ve bir daha asla tam anlamıyla toparlanamadı. Pek çok kez işinden izin alıp çeşitli senatoryumlarda tedavi gören Cantor, bu sancılı döneminde de bir taraftan matematikle uğraşmayı bırakmadı. Deutsche Mathematiker-Vereinigung'un 1903'teki toplantısında, kümeler kuramının paradoksları üzerine bir dizi konuşma yaptı ve Heidelberg'deki 1904 Uluslararası Matematikçiler Kongresi'ne katıldı.

1911'de İskoçya'daki St. Andrews Üniversitesi'nin 500. kuruluş yıldönümü kutlamalarına davet edilince çok sevindi. Burada, kümeler kuramının yeni yıldızı Bertrand Russell ile tanışmayı umuyordu, ama sağlık problemleri sebebiyle Almanya'ya erken dönmek zorunda kalınca bu umudu gerçekleşmedi. 1912'de St. Andrews Üniversitesi Cantor'a fahri doktora verdi, fakat Cantor yine sağlık problemleri yüzünden İskoçya'ya gidip doktorasını alamadı.

Cantor 1913'te emekliye ayrıldı ve I. Dünya Savaşı koşulları yüzünden fakirlik içinde yaşamaya başladı. 1915'te, Halle'de Cantor'un 70. yaşgünü için planlanan kutlamalar savaş yüzünden iptal edilince Cantor yaşgününü evinde daha mütevazı koşullarda kutladı. Haziran 1917'de tekrar bir senatoryuma giren Cantor, burada 6 Ocak 1918'de (72 yaşında) geçirdiği bir kalp krizi sonucunda hayata gözlerini yumdu ve Halle'deki Giebichenstein Mezarlığı'na gömüldü.

Ailesi

Cantor, Ağustos 1874'te kızkardeşinin arkadaşı Vally Guttmann ile evlendi ve bu evlilikten altı çocuğu oldu. Üniversiteden aldığı maaşın çok düşük olmasına rağmen, babasından kalan miras sayesinde ailesini geçindirebildi.

Kaynakça

Ayrıca bakınız

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

<span class="mw-page-title-main">Leopold Kronecker</span> Sayılar teorisi ve cebir üzerine çalışan Alman matematikçi (1823-1891)

Leopold Kronecker sayı teorisi, cebir ve mantık üzerine çalışan bir Alman matematikçiydi. Georg Cantor'un küme teorisi üzerine çalışmalarını eleştirdi ve Weber (1893) tarafından "Almanca: Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk " söylemiyle alıntılandı. Kronecker, Ernst Kummer'in öğrencisi ve ömür boyu arkadaşıydı.

<span class="mw-page-title-main">Doğal sayılar</span> sayma sayıları kümesine 0ın eklenmesiyle oluşan sayılar kümesi

Doğal sayılar, şeklinde sıralanan tam sayılardır ve kimi tanımlamalara göre 0 sayısı da bu kümeye dâhil edilebilir. Aralarında standart ISO 80000-2'nin de bulunduğu bazı tanımlar doğal sayıları 0 ile başlatır ve bu durum negatif olmayan tam sayılar için 0, 1, 2, 3, ... şeklinde bir karşılık bulurken, bazı tanımlamalar 1 ile başlamakta ve bu da pozitif tam sayılar için 1, 2, 3, ... şeklinde bir eşlenik oluşturur. Doğal sayıları sıfır olmadan ele alan metinlerde, sıfırın da dahil edildiği doğal sayılar bazen tam sayılar olarak adlandırılırken diğer bazı metinlerde bu terim, negatif tam sayılar da dahil olmak üzere tam sayılar için kullanılmaktadır. Özellikle ilkokul seviyesindeki eğitimde, doğal sayılar, negatif tam sayıları ve sıfırı dışlamak ve saymanın ayrık yapısını, gerçek sayıların bir karakteristiği olan ölçümün sürekliliğiyle karşıtlık oluşturmak amacıyla sayma sayıları olarak adlandırılabilir.

Matematik felsefesinde, sezgicilik ya da yeni sezgicilik akımı, matematiğe insanların oluşturucu etkinliği olarak bakan bir yaklaşımdır.

<span class="mw-page-title-main">Topoloji</span>

Topoloji, matematiğin ana dallarından biridir. Yunancada yer, yüzey veya uzay anlamına gelen topos ve bilim anlamına gelen logos sözcüklerinden türetilmiştir. Topoloji biliminin kuruluş aşamalarında yani 19. yüzyılın ortalarında, bu sözcük yerine aynı dalı ifade eden Latince analysis situs ür.

Matematikte reel sayılar kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.

Sayılabilirlik, bir kümedeki eleman sayısıyla doğal sayılar arasında birebir eşleme kurulabilme durumu.

<span class="mw-page-title-main">Aritmetik</span> temel matematik dalı

Aritmetik; matematiğin sayılar arasındaki ilişkiler ile sayıların problem çözmede kullanımı ile ilgilenen dalı. Aritmetik kavramı ile genellikle sayılar teorisi, ölçme ve hesaplama kastedilir. Bununla birlikte bazı matematikçiler daha karmaşık çeşitli işlemleri de aritmetik başlığı altında değerlendirirler.

<span class="mw-page-title-main">Richard Dedekind</span> Alman matematikçi (1831–1916)

Julius Wilhelm Richard Dedekind, sayılar teorisi, soyut cebir konularına önemli katkılarda bulunan bir Alman matematikçiydi. En iyi bilinen katkısı, Dedekind kesimi kavramı aracılığıyla reel sayıların tanımıdır. Ayrıca modern küme teorisi ve Mantıkçılık' olarak bilinen matematik felsefesi'nin gelişiminde öncü olarak kabul edilir.

<span class="mw-page-title-main">Carl Friedrich Gauss</span> Alman matematikçi ve fizikçi (1777-1855)

Johann Carl Friedrich Gauss ya da Gauß, Alman matematikçi, astronom, istatistikçi, olağanüstü katkılardan dolayı "Matematikçilerin prensi" ve "antik çağlardan beri yaşamış en büyük matematikçi" olarak anılır.

<span class="mw-page-title-main">Disquisitiones Arithmeticae</span>

Disquisitiones Arithmeticae, Alman matematikçi Carl Friedrich Gauss tarafından Latince yazılmış, ana konusu sayılar kuramı olan bir matematik kitabıdır. İlk baskısı 1801 yılında, Gauss henüz 24 yaşındayken yapılmıştır. Gauss bu eserinde, Fermat, Euler, Lagrange ve Legendre gibi matematikçilerin bulduğu sonuçları derlemiş ve bunların üzerine kendi katkılarını eklemiştir.

<span class="mw-page-title-main">Küme</span> matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir.

Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.

<span class="mw-page-title-main">Sonsuz</span> matematik ve fizikte herhangi bir sonu olmayan şeyler ve sayılar

Sonsuz, eski Yunanca Lemniscate kelimesinden gelmektedir, çoğunlukla matematik ve fizikte herhangi bir sonu olmayan şeyleri ve sayıları tarif etmekte kullanılan soyut bir kavramdır.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Kümeler teorisi</span>

Kümeler teorisi, matematiğin, matematiksel nesneler olan kümeleri inceleyen dalıdır. Neredeyse bütün matematik kümeler kuramının kendi dilinde ifade edilebilir. Alman matematikçi Georg Cantor tarafından 1874 ile 1895 yılları arasında geliştirilen ve daha sonrasında, Ernst Zermelo, Kurt Gödel gibi 20. yüzyılın oldukça tanınmış matematikçileri tarafından aksiyomatikleştirilen teoridir.

Temel matematikte sayı doğrusu, kalın çizgiden oluşan ve her noktası ilgili bir reel sayıya karşılık gelen en temel koordinat sistemidir. Daha çok tamsayılardan oluşan özel işaretli noktalar, aralarında eşit mesafe olacak biçimde gösterilir. Aşağıdaki şekilde her ne kadar −9 ile 9 arasındaki sayılar gösterilse bile, doğruya tüm reel sayılar dahildir. Bu sayılar her iki yönde sonsuza kadar devam eder. Bu sayı doğrusu daha çok, basit toplama ve çıkarmayı, özellikle negatif sayıları öğretmeye yardımcı olmak için kullanılır.

Sonsuz küçükler, ölçülemeyecek kadar küçük cisimleri tarif etmek için kullanılır. Sonsuz küçüklerden yararlanmaktaki asıl amaç nicelik bakımından çok küçük olsalar da hala açı, eğim gibi belirli özelliklere sahip olmalarıdır. Sonsuz küçük kelimesi 17. Yüzyıl Modern Latin uydurma sözcüğü olan bir dizideki “sonsuzuncu” terim anlamına gelen infitesimustan gelmektedir. İlk olarak 1670 yılı civarında Nicolas Marecator ya da Gottfried Wilhelm Leibniz tarafından kullanılmıştır. Genel anlamla sonsuz küçük bir cisim herhangi bir uygulanabilir ölçümden küçük olan ama boyut olarak sıfırdan farklı ya da çok küçük olan ve bu nedenle sıfırdan ayırt edilemeyecek durumdaki cisimdir. Bundan dolayı sonsuz küçük ifadesi sıfat olarak kullanıldığında aşırı derecede küçük anlamına gelmektedir. Bir anlam verebilmek için genellikle aynı bağlamdaki başka bir sonsuz küçük ile karşılaştırılması gerekir. Sonsuz miktarda çok sonsuz küçük bir integral üretmek amacıyla toplanır. Arşimet “Mekanik Teoremlerin Metodu” adı verilen çalışmasında katı cisimlerin hacimlerini ve bölgelerin alanlarını bulmak için Bölünmezler Yöntemi olarak bilinen yöntemi kullanmıştır. Yayımlanan resmi bilimsel eserlerinde aynı problemleri Tüketme Yöntemi ile çözmüştür. 15. Yüzyılda Cusalı Nicholas’ın üzerinde çalıştığı bir çemberin alanını çemberi sonsuz kenarlı bir çokgen olarak hesaplama yöntemi 17. Yüzyılda Johannes Kepler tarafından geliştirilmiştir. Simon Stevin’in 16. Yüzyılda tüm sayıların ondalık gösterimi üzerine yaptığı çalışmalar gerçek sürekliliğe temel hazırladı. Bonaventura Cavalieri’nin bölünmezler yöntemi klasik yazarların sonuçlarını genişletmesine olanak sağladı. Bölünmezler yöntemi, eş boyutlu varlıklardan oluşan geometrik figürler ile ilişkilidir. John Wallis’in sonsuz küçük görüşü geometrik figürleri figürle aynı boyuta sahip sonsuz yapı bloğuna bölmesi ile bölünmezler yönteminden ayrılır. Bu görüş integral kalkülüsünün genel yöntemleri için temel hazırlamıştır. Sonsuz küçükleri alan hesabında ile göstermiştir. Leibniz tarafından kullanılan sonsuz küçükler, sonlu ve sonsuz sayılar için başarılı olan Süreklilik Kuramı ve belirlenemez miktarlar için gösterimi değiştirmenin yönteminin sadece belirlenebilir olanları göstererek yapılacağını anlatan Aşkın Homojenite Yasası gibi bulgusal prensiplere dayanmaktaydı. 18. Yüzyıl sonsuz küçüklerin Leonard Euler ve Joseph-Louis Lagrange gibi matematikçiler tarafından sıklıkla kullanıldığı bir zaman aralığı olmuştur. Augustin-Louis Cauchy sonsuz küçükleri Cour d’Analyse adlı eserinde sürekliliği açıklamak için ve Dirac delta fonksiyonunun ilk formlarından birini tanımlarken kullanmıştır. Tıpkı Cantor ve Dedekind’ın Stevin’in sürekliliğinin daha soyut bir halini geliştirdikleri gibi Paul du Bois-Reymond da sonsuz küçük ile zenginleştirilmiş süreklilik üzerine fonksiyonların artış oranını temel alan bir seri çalışma yapmıştır. Du Bois-Reymond’un çalışması Emile Boral ve Thoralf Skolem’ e ilham verdi. Borel Bois-Reymond’un çalışmalarını Cauchy’nin sonsuz küçüklerin artış oranına dair çalışmalarıyla bağlantı kurdu. Skolem 1934’te aritmetiğin standart dışı ilk modellerini geliştirdi. Süreklilik ve sonsuz küçük yasalarının matematiksel “implementasyonu” Abraham Robinson tarafından 1961’de yapılmıştır. Robinson ayrıca Edwin Hewirr’in 1948’de ve Jerzy Łoś’un 1955’teki çalışmalarına dayanarak standart dışı analizi geliştirmiştir. Hipergerçekler sonsuz küçük ile zenginleştirilmiş sürekliliği sağlar ve transfer prensibi de Leibniz’in süreklilik yasasını sağlar.

Eşyapı ya da izomorfizma (ya da izomorfi), aynı kategoride(grupta) olan benzer iki matematiksel obje arasında bir gönderim olup matematiksel vücut tersi yapıda da muhafaza edilir. Aralarında bu şekilde eşyapı bulunan objelere eşyapısal ya da izomorf(ik) objeler denir. Örneğin iki küme arasında eşyapı, birebir, örten bir gönderimdir. Kümelerin üzerinde elemanlara sahip olma haricinde bir oluşum olmadığından, eşyapı gönderiminin koruyacağı başka bir yapı yoktur. Soyut cebirde iki grup arasında bir eşyapı, birebir, örten bir gönderimdir; dahası, iki gruptaki işleme saygı gösterir, bu iki işlemin birbirleriyle etkileşim halinde olmasını sağlar.

<span class="mw-page-title-main">Alef sayısı</span>

Alef sayıları, matematikte, daha ayrıntılı söylemek gerekirse kümeler teorisinde, iyi sıralı olabilen sonsuz kümelerin kardinalitesini göstermek için kullanılan sayılardır. Alef sayısı ismini sembolünden, İbranice alef harfinden alır. Bazı eski matematik kitaplarında yanlışlıkla alef sembolü ters basılmıştır.

<span class="mw-page-title-main">Set teorisi</span>

Makalenin kısa özeti; farklı nesnelerin koleksiyonları olarak kümeler hakkında konuşur, matematikte birçok kullanımları olduğunu ve matematiğin set teorisinde kodlanabileceğini ve matematiğin çoğunu yapmak için yeterince küme teorisinin aksiyomatize edilebileceğini belirtir. Konunun aksiyomları veya amaçlanan yorumu ile tanımlanıp tanımlanmadığı konusunda tarafsız kalır. Antinomilerden bahsedilirse, aksiyomatizasyonun çözüm olduğunu iddia etmemeli, ancak bazılarının onları aksiyomatizasyon ile çözüldüğünü, diğerleri de kümülatif hiyerarşi ile değerlendirdiğini belirtmelidir. -> Venn diyagramı, ikisinin set matematik Kümeleri. Küme teorisi, gayri resmi olarak nesne koleksiyonları olan matematiksel mantığın ' kümeleri üzerinde çalışan bir dalıdır. Herhangi bir nesne türü bir kümede toplanabilse de, küme teorisi çoğunlukla matematikle ilgili nesnelere uygulanır. Küme teorisinin dili neredeyse tüm matematiksel nesne leri tanımlamak için kullanılabilir.