İçeriğe atla

Geometrik seri

Mor alanlar toplamı büyük karenin alanının üçte birine eşittir.

Matematikte geometrik seri art arda gelen iki terimi arasında sabit bir oran bulunan seridir. Örneğin,

serisi geometriktir çünkü ilk terim dışındaki tüm terimler önceki terimi 'yle çarparak elde edilebilmektedir.

Seriye terimler eklendikçe toplam 1'e yaklaşmaktadır. Bu ifade, "bu serinin toplamı 1'dir" ya da "bu serinin sonsuz toplamı 1'dir" biçiminde de söylenebilmektedir.

Geometrik seriler, sonlu toplamı olan sonsuz serilere verilebilecek en basit örneklerdendir. Tarihte kalkülüsün gelişiminde büyük bir öneme sahip olan bu seriler günümüzde seri yakınsaklığı çalışmalarında kullanılmaktadır. Geometrik seriler matematiğin yanı sıra fizik, mühendislik, biyoloji, ekonomi, berimsel bilimler ve finansta da kullanılmaktadır.

Ortak oran

Bir geometrik serinin terimleri geometrik ilerleme oluştururlar. Aşağıdaki tablo farklı ortak oranlara sahip geometrik serileri göstermektedir.

Ortak oran Seri
10 4 + 40 + 400 + 4000 + 40,000 + ···
1/3 9 + 3 + 1 + 1/3 + 1/9 + ···
1/10 7 + 0.7 + 0.07 + 0.007 + 0.0007 + ···
1 3 + 3 + 3 + 3 + 3 + ···
-1/2 1 - 1/2 + 1/4 - 1/8 + 1/16 - 1/32 + ···
-1 3 - 3 + 3 - 3 + 3 - ···

Terimlerin davranışı ortak oran r'ye bağlıdır.

r -1 ile +1 arasındaysa seri terimleri giderek küçülür ve sıfıra doğru yaklaşır. Seri, toplamı olan 1'e yakınsar.
r 1'den büyük ya da -1'den küçükse seri terimleri giderek büyür ve böylece seri herhangi bir sonlu değere yakınsamaz (seri ıraksar).
r 1'e eşitse serinin tüm terimleri 1'dir. Seri bu durumda da ıraksar.
r -1 ise seri terimleri iki değeri değişmeli olarak alır (örneğin, 2, -2, 2, -2, 2, …). Terimler iki değer arasında dalgalanır (2, 0, 2, 0, 2, … gibi). Seri bu durumda da ıraksar.

Toplam

Bir geometrik serinin toplamı seri terimleri sıfıra yaklaştığı sürece sonludur. Toplam, serinin kendine benzerliği kullanılarak hesaplanabilir.

Örnek

s toplamının kendine benzer ifadesi. En büyük çemberin kaldırılması özgün şeklin 2/3'ü boyutunda bir şekil oluşturur.

geometrik serisi 2/3'lük bir ortak orana sahiptir. Çarpım işlemleri bu ortak oranla yapıldığında 1 olan ilk terim 2/3'e, 2/3 olan ikinci terim 4/9'a dönüşür. İşlemler diğer terimler için de yapıldığında

sonucu elde edilir. Bu seri, özgün seriyle ilk terim dışında tümüyle aynıdır. Kendine benzer herhangi bir ifadeyi hesaplamak için benzer yöntemler kullanılabilir.

Formül

olmak koşuluyla bir geometrik serinin ilk n terimi toplamı

biçiminde ifade edilebilir. Burada a, serinin ilk terimini gösterirken r, ortak oranı belirtir. Bu formül şu biçimde çıkarılabilir:

n sonsuza giderken serinin yakınsayabilmesi için r'nin mutlak değerinin 1'den küçük olması gerekir. Toplam

biçimini alır. a = 1 ise bu ifade

eşitliğine indirgenir. Bu formül şu biçimde çıkarılabilir:

Bu formül yalnızca yakınsak seriler için (r'nin büyüklüğü 1'den küçükken) geçerlidir. Örneğin, r = 10 iken toplam tanımsızdır.

Bu akıl yürütme karmaşık düzlemde de aynı kısıtlamalarla yer alır.

Yakınsaklık kanıtı

Geometrik serinin yakınsadığı, geometrik ilerleme formülü kullanılarak kanıtlanabilir.

r | < 1 için rn+1 → 0 olduğundan limit 1 /(1 - r) ifadesine eşit olur.

Uygulamalar

Yinelenen ondalıklar

Bir yinelenen ondalık, ortak oranı 1/10'un bir üssü olan geometrik seri olarak da düşünülebilir.

Geometrik seri toplam formülü, ondalığı kesre dönüştürmek amacıyla kullanılabilir.

Görüldüğü gibi, formül yalnızca bir ondalık için değil, art arda gelen yinelenen ondalıklar için de kullanılabilmektedir.

Yinelenen ondalıklı herhangi bir seri şu biçimde yalınlaştırılabilir:

Parabolün karelenmesi

Bir parabol ve bir doğru tarafından çevrelenen alan sonsuz çoklukta üçgen oluşturur.

Arşimet geometrik seri toplamını, bir parabol ve bir doğrunun çevrelediği alanı hesaplamak için kullanmıştır. Temel alınan yöntem, alanın sonsuz çoklukta üçgene ayrılması olarak tanımlanabilir.

Arşimet teoremi, parabolün altında kalan alanın mavi üçgenin alanının 4/3'üne eşit olduğunu ortaya koymaktadır. Üstün geometri bilgisini kullanan Arşimet, sarı üçgenlerin alanının mavi üçgenlerin alanının 1/8'ini, yeşil üçgenlerin alanının sarı üçgenlerin alanının 1/8'ini, ... oluşturduğunu gözlemlemiştir.

Mavi üçgenin alanı 1 olarak alınırsa toplam alan

serisiyle ifade edilebilir.

İlk terim mavi üçgenin alanını, ikinci terim iki sarı üçgenin alanını, üçüncü terim dört yeşil üçgenin alanını belirtmekte ve bu seri sonsuza dek sürmektedir. Kesirler yalınlaştırıldığında

sonucuna ulaşılır. Bu, ortak oranı 1/4 olan bir geometrik seridir. Kesirli bölüm 1/3'e eşittir.

Toplam

olarak hesaplanır.

Bu hesaplama, eski bir integral alma yolu olan tüketme yöntemini kullanmaktadır. Bu alan, çağdaş kalkülüste belirli integral yardımıyla bulunabilmektedir.

Fraktal geometri

Koch kar tanesinin içinde sonsuz çoklukta üçgen bulunur.

Fraktal çalışmalarında geometrik seriler, bir kendine benzer şeklin çevresi, alanı ve hacmini hesaplamada kullanılmaktadır.

Örneğin, Koch kar tanesinin kapladığı alan sonsuz çoklukta eşkenar üçgen olarak tanımlanabilir. Yeşil üçgenin her ayrıtı büyük mavi üçgenin ayrıt uzunluğunun 1/3'üne eşit olduğundan yeşil üçgenin alanı toplam alanın 1/9'unu kaplar. Mavi üçgenin alanı temel alındığında kar tanesinin toplam alanı

olarak yazılabilir.

Bu serinin ilk terimi mavi üçgenin alanını, ikinci terimi üç yeşil üçgenin toplam alanını, üçüncü terim on iki sarı üçgenin toplam alanını göstermekte ve bu sonsuza dek sürmektedir. Baştaki 1 dışarıda tutulduğunda bu seri, ortak oranı 4/9 olan geometrik seriye dönüşmektedir. Bu geometrik serinin ilk terimi a = 3(1/9) = 1/3'tür. Böylece, alan

olarak hesaplanabilir. Koch kar tanesinin alanı temel üçgenin alanının 8/5'ine eşittir.

Zeno çatışkıları

Bir geometrik serinin yakınsaklığının anlaşılması Zeno çatışkılarının büyük bir bölümünü saf dışı bırakmaktadır. Bunun temel nedeni, bir sonsuz kümenin toplamının | r | < 1 için sonlu kalabilmesidir. Örneğin, Zeno'nun ikiye bölme çatışkısı devinimi olanaksızlaştırmaktadır çünkü katedilecek her yol, kalan uzunluğun yarısı cinsinden ifade edilebilir. Buradaki gizli varsayım, sonlu sayıda adımın sonsuz toplamının sonlu olamayacağıdır. Bu, geometrik serilerin yakınsaklığı kavramı tarafından çürütülmüş bir önermedir.

Öklit

Öklit'in Elementler adlı yapıtının IX. kitap, 35. önerme16 Kasım 2011 tarihinde Wayback Machine sitesinde arşivlendi. si geometrik serinin kısmi toplamını serinin terimleri cinsinden ifade etmektedir. Bu gösterim, çağdaş formülle birebir örtüşmektedir.

Ekonomi

Geometrik seriler, ekonomide yıllık ödeneklerin bugünkü değerlerinin hesaplanmasında kullanılmaktadır.

Bir yıl içinde 100 lira gelir elde edecek olan birinin kazancı, parayı hemen alması durumunda elde edecek olduğu kazançtan daha azdır çünkü ele geçmeyen para yatırım aracı olarak kullanılamaz. Bir yıl sonra ele geçecek olan 100 liranın bugünkü değeri 100 / (1 + i)'dir. Burada i, yıllık faiz oranını göstermektedir.

Benzer biçimde, iki yıl sonra ele geçecek olan 100 liranın bugünkü değeri 100 / (1 + i)2 olarak hesaplanır. Böylece, her yıl 100 liralık gelir elde edecek olan birinin elindeki paranın bugünkü değeri bir sonsuz seri biçiminde yazılabilir.

Bu, ortak oranı 1 / (1 + i) olan geometrik seridir. Toplam

biçiminde yazılabilir.

Yıllık faiz oranı %10 olarak alınırsa tüm gelirin bugünkü değeri 1000 lira olur.

Ayrıca bakınız

  • Seri (matematik)
  • Geometrik ilerleme
  • Oran testi
  • Kök testi
  • Iraksak geometrik seri
  • Neumann serisi
  • Geometrik Artış

Özel geometrik seriler

  • Grandi serisi
  • 1 + 2 + 4 + 8 + · · ·
  • 1 − 2 + 4 − 8 + · · ·
  • 1/2 + 1/4 + 1/8 + 1/16 + · · ·
  • 1/2 − 1/4 + 1/8 − 1/16 + · · ·
  • 1/4 + 1/16 + 1/64 + 1/256 + · · ·

Kaynakça

Tarih ve felsefe

Ekonomi

Biyoloji

  • Edward Batschelet (1992). Introduction to Mathematics for Life Scientists, 3. basım, Springer. ISBN 978-0-387-09648-3
  • Richard F. Burton (1998). Biology by Numbers: An Encouragement to Quantitative Thinking, Cambridge University Press. ISBN 978-0-521-57698-7

Berimsel bilimler

  • John Rast Hubbard (2000). Schaum's Outline of Theory and Problems of Data Structures With Java, McGraw-Hill. ISBN 978-0-07-137870-3

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pi sayısı</span> dairenin çevresinin çapına oranını ifade eden irrasyonel matematik sabiti

Pi sayısı , bir dairenin çevresinin çapına bölümü ile elde edilen irrasyonel matematik sabitidir. İsmini, Yunanca περίμετρον (çevre) sözcüğünün ilk harfi olan π harfinden alır. Pi sayısı, Arşimet sabiti ve Ludolph sayısı olarak da bilinir. Aynı zamanda ismini yunancada pie anlamına gelen πίτα' dan alır.

<span class="mw-page-title-main">Taylor serisi</span>

Taylor serisi matematikte, bir fonksiyonun, o fonksiyonun terimlerinin tek bir noktadaki türev değerlerinden hesaplanan sonsuz toplamı şeklinde yazılması şeklindeki gösterimi/açılımıdır. Adını İngiliz matematikçi Brook Taylor'dan almıştır. Eğer seri sıfır merkezli ise, Taylor serisi daha basit bir biçime girer ve bu özel seriye İskoç matematikçi Colin Maclaurin'e istinaden Maclaurin serisi denir. Bir serinin terimlerinden sonlu bir sayı kadarını kullanmak, bu seriyi bir fonksiyona yakınsamak için genel bir yöntemdir. Taylor serisi, Taylor polinomunun limiti olarak da görülebilir.

Seri, bir dizi olmak üzere toplamı. Bir seri kısaca şeklinde gösterilir. Bir serinin bütün terimleri pozitifse, seriye pozitif terimli seri, negatifse negatif terimli seri; bir pozitif bir negatif ise almaşık seri veya alterne seri adı verilir. , , , ..., toplamlarına serinin kısmi toplamları, dizisine de kısmi toplamlar dizisi denir. Bir seri dizisi olarak da tanımlanabilir. Bu dizi yakınsak ise seri de yakınsaktır.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

Harmonik ortalama, gözlem sonuçlarının terslerinin aritmetik ortalamasının tersidir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

<span class="mw-page-title-main">Laurent serisi</span>

Matematikte karmaşık bir fonksiyonun Laurent serisi bu fonksiyonun negatif dereceli terimler de içeren kuvvet serisi temsilidir. Karmaşık fonksiyonların Taylor serileri açılımının mümkün olmadığı durumlarda bu fonksiyonları açıklamak için de kullanılabilir. Laurent serisi ilk defa 1843'te Pierre Alphonse Laurent tarafından yayınlanmış ve bu matematikçinin adını almıştır. Karl Weierstrass 1841'de bu seriyi bulmuş olabilir ancak o zamanda ilk yayınlayan olamamıştır.

<span class="mw-page-title-main">1 − 2 + 3 − 4 + · · ·</span> Matematikte sonsuz bir seri

Matematikte 1 - 2 + 3 - 4 + ..., terimlerinin işaretleri sırasıyla değişen ardışık pozitif tam sayıların oluşturduğu sonsuz bir seridir. Serinin ilk m teriminin toplamı, Sigma toplama gösterimi kullanılarak şöyle ifade edilebilir:

<span class="mw-page-title-main">1 + 2 + 3 + 4 + · · ·</span>

Tüm doğal sayıların toplamını belirten ve

<span class="mw-page-title-main">Harmonik seriler</span>

Harmonik seri ıraksak bir seridir, harmonik sözcüğü ise müzikten devşirilmiştir.

Matematikte ıraksak seri yakınsak olmayan bir sonsuz seridir. Bu, serinin kısmi toplamlarının herhangi bir limit değeri olmadığı anlamına gelmektedir.

Matematiksel çözümlemede Cesàro toplamı bir sonsuz diziye toplam değeri atamanın farklı bir yoludur. Bir dizi A toplamına yakınsıyorsa bu dizinin Cesàro toplamı da A olur. Cesàro toplamı, yakınsamayan dizilere de değer atayabilmektedir. Ne var ki, artı sonsuz değerine yönelen bir dizi hiçbir koşulda sonlu bir toplam değerine sahip olamayacaktır.

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Kuvvet serisi</span>

Matematikte kuvvet serisi

<span class="mw-page-title-main">Euler spirali</span> düzlemsel eğri

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

Öklid'in teoremi, sayılar teorisinde temel bir ifade olup sonsuz sayıda asal sayı olduğunu ileri sürer. Teoremin iyi bilinen farklı ispatları bulunmaktadır.

Matematikte eğer bir serinin terimlerinin mutlak değerlerinin toplamı yakınsak ise bu seri mutlak yakınsak olur. Daha iyi anlatmak gerekirse, gerçek veya karmaşık bir seri olan serisinin terimlerinin mutlak değerlerinden oluşan serisi yakınsak ise bu seri mutlak yakınsaktır. Benzer şekilde eğer bir fonksiyonun has olmayan integrali,, yine bu fonksiyonun mutlak değerinin integrali olan sağlanır ise bu integral mutlak yakınsaktır.

Bir aritmetik ilerleme veya aritmetik dizi (AP), birbirini izleyen iki terim arasındaki farkın dizi boyunca sabit kaldığı bir sayı dizisidir. Sabit fark, bu aritmetik dizinin ortak farkı olarak adlandırılır. Örneğin, 5, 7, 9, 11, 13, 15,. .. ortak farkı 2 olan bir aritmetik dizidir.