İçeriğe atla

Geometrik ortalama teoremi

gri karenin alanı = gri dikdörtgenin alanı:

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

Teorem ve uygulamaları

'nun değerini 1 alarak 'nin inşa edilmesi

Eğer , dik üçgende yüksekliği ve ile hipotenüs üzerindeki parçaları gösteriyorsa, teorem şu şekilde ifade edilebilir:[1]

veya alan cinsinden ifade edilirse:

AO-GO eşitsizliği

Sonraki versiyon, bir dikdörtgeni cetvel ve pergel ile kare yapmak için, yani belirli bir dikdörtgene eşit alanlı bir kare oluşturmak için bir yöntem sağlar. Kenarları ve olan böyle bir dikdörtgenin, sol üst köşesini ile gösterelim. Şimdi parçasını soluna kadar uzatalım ('de ortalanmış yayını kullanarak) ve çapı yeni parça ve uç noktaları ile olan bir yarım çember çizelim. Sonra 'deki çapa, 'deki yarım çemberi kesen dik bir doğru çizelim. Thales teoremine göre ve çap, doğru parçasının yükseklik olduğu bir dik üçgen oluşturur, dolayısıyla dikdörtgenin alanına eşit alanlı olan bir karenin kenarıdır. Yöntem ayrıca kare köklerin oluşturulmasına da izin verir (İnşa edilebilir sayıya bakın), çünkü 1 genişliğinde bir dikdörtgenden başlayarak inşa edilen karenin, dikdörtgenin diğer kenar uzunluğunun kareköküne eşit bir kenar uzunluğu olacaktır.[1]

Teorem, iki sayı durumunda AO-GO eşitsizliğinin geometrik bir kanıtını sağlamak için kullanılabilir. ve sayıları için çapında yarım çember oluşturulur. Şimdi yükseklik, iki sayının geometrik ortalamasını ve yarıçapı aritmetik ortalamasını temsil eder. Yükseklik her zaman yarıçapa eşit veya daha küçük olduğu için bu eşitsizliği ortaya çıkarır.[2]

Kiriş teoreminin özel bir durumu olarak geometrik ortalama teoremi:

Geometrik ortalama teoremi, Thales teoreminin tersi, dik üçgenin hipotenüsünün çevrel çemberinin çapı olmasını sağladığından, ayrıca bir çember için kesişen kirişler teoreminin özel bir durumu olarak düşünülebilir.[1]

İfadenin tersi de doğrudur. Yüksekliğin, kendisi tarafından oluşturulan iki doğru parçasının geometrik ortalamasına eşit olduğu herhangi bir üçgen, bir dik üçgendir.

Tarihçe

Teorem genellikle, onu Elemanlar VI. kitabında 8. önermenin doğal sonucu olarak ifade eden Öklid'e (y. MÖ 360-280) atfedilir. II. Kitabın 14. önermesinde, Öklid bir dikdörtgenin karesini almak için burada verilen yönteme esasen uyan bir yöntem verir. Bununla birlikte, Öklid, geometrik ortalama teoremine dayanmak yerine, yapının doğruluğu için biraz daha karmaşık bir kanıt sağlar.[1][3]

İspat

Benzerliğe dayanarak

Teoremin kanıtı :

ve üçgenleri benzerdir, çünkü:

  • üçgenlerini düşünün, burada ve 'dir, bu nedenle AA postülatına göre 'dir.
  • Ayrıca, üçgenleri düşünün, burada ve 'dir, bu nedenle AA postülatına göre 'dir.

Bu nedenle, her iki üçgen ve , üçgenine ve kendilerine benzerdir, yani 'dir.

Benzerlik nedeniyle aşağıdaki eşitlik oranlarını elde ederiz ve cebirsel yeniden düzenlenmesi bize teoremi verir:[1]

Tersinin kanıtı:

Tersi için eşitliğini sağlanan bir üçgenimiz vardır ve 'deki açının dik açı olduğunun gösterilmesi gerekir. Şimdi yüzünden ayrıca ifadesine sahibiz. eşitliği ile birlikte üçgenler ve eşit büyüklükte bir açıya ve aynı orana sahip karşılıklı kenar çiftlerine sahiptir. Bu, üçgenlerin benzer olduğu anlamına gelir ve sonuç aşağıdaki şekilde ifade edilebilir:

Pisagor teoremine dayanarak

Pisagor teoremi ile kanıt

Geometrik ortalama teoreminin kurgusunda, Pisagor teoreminin uygulanabileceği üç dik üçgen , ve vardır:

,
ve

İlk 2 iki denklemi taraf tarafa toplamak ve ardından üçüncüyü kullanmak aşağıdaki ifadenin elde edilmesini sağlar:

.

İkiye bölerek sadeleştirme, sonunda geometrik ortalama teoreminin formülünü verir.[4]

Parçalarına ayırma ve yeniden düzenlemeye dayanarak

Dik üçgeni yüksekliği boyunca parçalarına ayırmak, iki farklı şekilde artırılabilen ve ve uzunluklarına sahip dikey kenarları olan daha büyük bir dik üçgen olarak düzenlenebilen iki benzer üçgen verir. Bu tür bir düzenleme, bu tamamlamak için alanına sahip bir kare alan ve alanına sahip diğer bir dikdörtgen gerektirir. Her iki düzenleme de aynı üçgeni verdiğinden, kare ve dikdörtgenin alanları aynı olmalıdır.

Kesme haritalamaya dayanarak

Yüksekliğin karesi, ve kenarları ile eşit alanlı bir dikdörtgene, üç kesme haritalama yardımıyla dönüştürülebilir (kesme haritalama alanı korur):

Ön görüntü olarak orijinal kareden başlayarak ilişkili sabit çizgileriyle (noktalı) kesme haritalamaları, her paralelkenar, solundaki şeklin kesme haritalamasının görüntüsünü gösterir.

Kaynakça

  1. ^ a b c d e Hartmut Wellstein, Peter Kirsche: Elementargeometrie. Springer, 2009, 9783834808561, pp. 76-77 (German, Google Kitaplar'da online copy)
  2. ^ Claudi Alsina, Roger B. Nelsen: Icons of Mathematics: An Exploration of Twenty Key Images. MAA 2011, 9780883853528, pp. 31–32 (Google Kitaplar'da online copy)
  3. ^ Öklid: Elemanlar, book II – prop. 14, book VI – prop. 8, (online copy 1 Temmuz 2017 tarihinde Wayback Machine sitesinde arşivlendi.)
  4. ^ Ilka Agricola, Thomas Friedrich: Elementary Geometry. AMS 2008, 9780821843475, p. 25 (Google Kitaplar'da online copy, s. 25,)

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Sinüs teoremi</span> Öklid geometrisinde üçgenlerle ilgili bir teorem

Sinüs teoremi, bir çembersel üçgende bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Sinüs, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün birbirine oranıdır.

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

<span class="mw-page-title-main">Brocard noktaları</span>

Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Pappus'un alan teoremi</span> rastgele bir üçgenin üç kenarına iliştirilmiş üç paralelkenarın alanları arasındaki ilişkiyi verir

Pappus'un alan teoremi, verilen herhangi bir üçgenin üç kenarına yaslanmış üç paralelkenarın alanları arasındaki ilişkiyi tanımlar. Pisagor teoreminin bir genellemesi olarak da düşünülebilecek teorem, adını onu keşfeden Yunan matematikçi İskenderiyeli Pappus'tan almıştır.

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

Dış açı teoremi, bir üçgenin bir dış açısının ölçüsünün, uzak iç açılarının ölçülerinden daha büyük olduğunu belirten Ökllid'in Elemanlar'ı Önerme 1.16'dır. Bu, mutlak geometride temel bir sonuçtur çünkü ispatı paralellik postülatına bağlı değildir.

<span class="mw-page-title-main">Barrow eşitsizliği</span>

Geometride Barrow eşitsizliği, bir üçgen içindeki rastgele bir nokta alındığında, bu nokta ile üçgenin köşeleri ve üçgenin kenarlarındaki belirli noktalar arasındaki mesafeleri ilişkilendiren bir eşitsizliktir. Adını Amerikalı bir matematikçi olan David Francis Barrow'dan almıştır.

Öklid geometrisinde, Erdős–Mordell eşitsizliği herhangi bir üçgeni ve içindeki noktası için, 'den kenarlara olan uzunlukların toplamının, 'den köşelere olan uzunlukların toplamının yarısına eşit veya daha az olduğunu belirten teoremdir. Teorem, adını Macar matematikçi Paul Erdős ve Amerika doğumlu İngiliz matematikçi Louis Mordell'den almıştır. Erdős (1935) eşitsizliği kanıtlama problemini ortaya attı; iki yıl sonra tarafından bir kanıt sağlandı. Ancak bu çözüm çok basit değildi. Sonraki basit ispatlar daha sonra Kazarinoff (1957), Bankoff (1958) ve Alsina & Nelsen (2007) tarafından verilmiştir.

<span class="mw-page-title-main">Euler teoremi (geometri)</span>

Geometride, Euler teoremi, üçgenin çevrel çemberinin merkezi ve iç teğet çemberinin merkezi arasındaki uzunluğunun aşağıdaki şekilde ifade edildiğini belirtir:

<span class="mw-page-title-main">Finsler–Hadwiger teoremi</span> Bir tepe noktasını paylaşan herhangi iki kareden türetilen üçüncü bir kareyi açıklar

Finsler–Hadwiger teoremi, bir tepe noktasını paylaşan herhangi iki kareden türetilen üçüncü bir kareyi tanımlayan Öklid düzlem geometrisindeki ifadedir. Teorem adını, üçgenin kenar uzunlukları ve alanıyla ilgili Hadwiger-Finsler eşitsizliğini yayınladıkları makalenin bir parçası olarak 1937'de yayınlayan Alman ve İsviçreli matematikçi Paul Finsler ile İsviçreli matematikçi Hugo Hadwiger'den almıştır.

<span class="mw-page-title-main">Çevre açı</span>

Geometride, çevre açı, çember üzerinde iki sekant (kesen) çizgisi kesiştiğinde bir çember üzerinde oluşan açıdır. Çember üzerindeki bir nokta ile çember üzerinde verilen diğer iki noktanın oluşturduğu açı olarak da tanımlanabilir.

<span class="mw-page-title-main">Kesişen kesenler teoremi</span>

Kesişen kesen (sekant) teoremi veya sadece kesen (sekant) teoremi, kesişen iki sekant ve ilişkili çember tarafından oluşturulan doğru parçalarının ilişkisini açıklayan temel bir geometri teoremidir.

<span class="mw-page-title-main">Jacobi teoremi (geometri)</span>

Düzlem geometride, bir Jacobi noktası, bir üçgeni ve , ve açılarından oluşan üçlü tarafından belirlenen Öklid düzleminde bir noktadır. Bu bilgi, , ve olmak üzere , ve şeklinde üç noktayı belirlemek için yeterlidir. Ardından, Alman matematikçi Karl Friedrich Andreas Jacobi (1795-1855) teoremine göre, , ve doğruları, Jacobi noktası denilen bir noktasında kesişir.

<span class="mw-page-title-main">Pompeiu teoremi</span>

Pompeiu teoremi, Romanyalı matematikçi Dimitrie Pompeiu tarafından keşfedilen bir düzlem geometrisi sonucudur. Teorem basittir, ancak klasik değildir. Aşağıdakileri ifade eder:

Bir eşkenar üçgen verildiğinde Düzlemde ABC ve ABC üçgeninin düzleminde bir P noktası, PA, PB ve PC uzunlukları bir üçgenin kenarlarını oluşturur.