İçeriğe atla

Geometri

Geometri (eski adı Hendese), matematiğin uzamsal ilişkiler ile ilgilenen alt dalıdır. Yunanca Γεωμετρία "Geo" (yer) ve "metro" (ölçüm) birleşiminden türetilmiş bir isimdir.

Geometri, arazi ölçümü sözcüklerinden türetilmiştir. Herodot (M.Ö. 450), geometrinin başlangıç yerinin Mısır olduğunu kabul eder. Ona göre geometri kavramı Mısır kö­kenlidir. Sözcüğün kullanımı da Eflatun, Aristo ve Thales'e kadar gider. Yalnız Öklid, geometri sözcüğü yerine Elements sözcüğünü yeğlemiştir. Elements sözcüğünün Yunanca karşılığı stoicheia sözcüğüdür.

Bir kümenin üzerine konan ve kümenin ögelerini birbirleriyle ilişkilendiren bir uygun yapı, geometri yapılmasını olanaklı kılar. Bir düzlemin üzerine doğal olarak konacak ve sezgisel uzaklık duygusunu gözetecek "lise geometrisi"nin adı Öklid geometrisidir. Bu geometrinin tarihsel olarak ilginç ve önemli bir özelliği paralellik aksiyomudur. Bu aksiyomu sağlamayan ama geri kalan tüm aksiyomları sağlayan geometrilere Öklid dışı geometriler denir. Bunlara örnek olarak Hiperbolik geometri ya da küresel geometri verilebilir. Ayrıca ölçeksiz bir cetvel, üçgen ve pergelden başka bir şey kullanmadan çalışılan ölçü dışı geometri de vardır.

Günümüzde kullanılan doğru, yay, ışın, açı ortay, kenarortay gibi birçok temel geometri teriminin Türkçesi Mustafa Kemal Atatürk'ün Geometri adlı eserinde yazılan eserde önerdiği terimlerden yararlanılarak kullanılmaya başlanmıştır.

Tarihçe

İkizkenar üçgen

İlk geometrilerin tümü, kendi doğası nedeniyle sezgiseldir. Bunlar daha çok ilk insanların çevresinde görünen doğal şekillerdir. Bu geometriler daha çok görsel tür­dedir. İkinci olarak şekillerin ölçülmesi aşaması gelir. Dörtgenlerin ve üçgenlerin ölçül­mesi ilk kez Mısır'da Ahmes'in (M.Ö. 1550) papirüsünde görülür.

Bu papirüs M.Ö. 1580 tarihinden önce yazılmıştır, b tabanlı ve h yükseklikli ikiz kenar üçgenin alanının bh/2 olduğu verilmiştir.

Yine aynı papirüste d çaplı bir dairenin alanının (d-d/9)2yazımına eş değer olduğu yazılmıştır. Bu yazımlara göre pi sayısı yaklaşık olarak 3,1605 dolay­larındadır. Bu formül geometrik şekilden yaklaşık olarak elde edilmiştir.

Bu formülün tabletlerde de olduğu söylenmektedir. Çin'in yerli geometrisi de gelişkin örnekler içerir. M.Ö. 1100 yıllarında yazıldığı sanılan Çinlilerin ünlü Nine Sections (Do­kuz Bölüm) kitabında dik açılı üçgen ve ispatsız olarak Pisagor teoremi vardır. Daha sonraki Çin geometrilerinde ölçümleri içeren çok zeki buluşlar vardır. Yine geometrik görünümle Pisagor teoreminin ispatı yapılmıştır. Bu geometrik şekille verilen kitabın M.Ö. 2000 yıllarında yazıldığı sanılıyor.

Hintlerin yerli geometrilerinde de matematiksel bir ispat yoktur. Daha çok görsel ve deneysel ölçülere dayanan kuralları vardır. Bunlar da o kadar ileri bir geometri oluş­turmaz. Bin yıllık bir süre boyunca kullanılan Yunan geometrisi ise daha çok görseldir. Eski Roma geometrisi daha çok kullanım alanlarına yöneliktir.

Arazi ölçümleri, şehir yerleşimleri, su kanalları ve savaş sanatında geometriyi Romalılar iyi kullanmışlardır. Fakat bunlar görsel geometriyi fazla kullanmamışlardır. Zaten görsel geometrinin kökeni Yunanistan'da başlamıştır. Bu çalışmalar ilk kez Thales'in (M.Ö. 600) yapıtlarında görülür. Thales bu teoremleri Mezopotamya'da ve Mısır'da kullandıklarını görür. Altı teoremle önderlik eder ve bu teoremlerin ispatını yapar. Matematikte ispat yapma Thales'le başlamıştır. Thales'in bu ispatları zamanla kaybol­muş ama ondan sonra bunları öğrenenler gelecek kuşaklara aktarmıştır. Bin yıl süren bu görsel Yunan geometrisi zamanla gerilemiş ve yeni bir çalışma getirilmemiştir.

Batı Avrupa'nın uyanmasından önceki yüzyıla kadar Yunan kültürünü ve geomet­risini tam olarak Müslümanlar anlamıştır. Yunan klasiklerini, geometrilerini, fen bilimlerini ve felsefelerini Arapçaya çevirmişlerdir. Fakat ne Öklid'in ne de Apollonius'un çalış­malarına gözle görünür bir katkı yapmışlardır. Okullaşma olma­dığı için gelecek gençlere bu çeviriler öğretilmemiş, bu kitaplar sadece neredeyse bir süs olarak sarayda kalmıştır. Yaptıkları hizmet, kaybolmaya yüz tutmuş Yunan klasiklerini, matematiksel üretimini ve düşüncelerini Arapça çevirileriyle Avrupa'ya iletmişlerdir.

Kadın Geometri öğretiyor. Orta Çağ'ın başlangıcında Öklid'in Unsurlar'ının (Elements) çevirisinin canlandırılması (yaklaşık 1310)

Avrupa'daki karanlık çağda biri Boethius'un (M.Ö. 510) diğeri de Öklid'in (M.Ö. 300) Sements isimli kitabı vardı. Bunlardan sonra Gerbert'in (1000) ve Fibonacci'nin (1202) geometrileri sayılabilir ama bu geometriler İskenderiye geometrilerinden ileri bir dü­zeyde değildi. Avrupa'nın geometrisine büyük katkı 1242 yılında ilk baskısı yapılan Öklid geometrisi oldu. Zaten çok iyi düzenlenmiş ve yazılmış olan bu geometriler Avrupa'ya hızla yayıldı ve her tarafında bilinir oldu. Öklid'in geometrisinin ardından yavaş yavaş geometri ürünleri ortaya çıkmaya başladı. On yedinci yüzyılın başlarında analitik geo­metri ve 1639 yılında da Desargues'ın (1593-1662) izdüşüm geometrisi basıldı. Ana­litik geometri Descartes (1596-1650) ve Fermat (1601-1665) tarafından aynı dönem­lerde yapıldı. Fermat yaptığı çalışmaları yayınlamadığı için analitik geometrinin bulun­ması onuru Descartes'e verildi. Analitik geometri kısaca geometri ile cebir arasındaki ilişkidir diyebiliriz. Geometri ile cebir arasındaki ilişkiyi ilk kez Descartes çıkar­dığı için büyük bir matematikçi olmuştur. Desargues'ın izdüşüm geometrisi matematikçilerin dikkatini çekmiş ve on dokuzuncu yüzyılda çıkacak olan geometricilere coşku ve esin kaynağı olmuştur.

Analitik geometri bulunduktan sonra Apollonius'un (M.Ö. 262-190) konikleri sen­tetik ve analitik olarak yeniden incelenmiştir. Sadece konikler değil, eski Yunan geo­metrisi yeniden analitik olarak gözden geçirilmiştir. Sentetik geometrinin tüm problemleri bir kez de analitik olarak kanıtlanmıştır.

Kullanım alanları

Ortografik izdüşümde doğu yarımküre. 15 ° gratikül, 60 ° D merkez meridyen. Görüntüler, okunabilirliği ve kontrastı artırmak için hafifletilen okyanuslarla NASA'nın Mavi Mermer yaz ayı kompozitinin bir türevidir. Geocart harita projeksiyon yazılımı ile oluşturulan görüntü.

Geometri günlük yaşamın hemen her alanında gereklidir. Geometride uzunluk, alan, hacim, yüzey, açı gibi kavramlar bazı nicelikleri belirlemede kullanılır.

Geometrinin en çok iç içe olduğu dallar; cebir ve trigonometri, mimarlık, mühendislikler (Yol, köprü, yapı, makine, gemi ve uçak yapımı; maden, su ve elektrik işleri gibi bayındırlık ve zanaatla ilgili teknik çalışmalar vb.), endüstriyel alanlar, simülasyonlar, bilgisayar programları ve grafikleri, sibernetik, tasarım, sanat vb.dir. Geometrinin kullanılmadığı meslek ya da alan yok gibidir desek yerinde olur.

Sanat eserlerinin geometrik olması onlara estetik değerler kazandırmıştır. Ünlü ressam Leonardo da Vinci’nin resimde vücut oranları üzerine yaptığı çalışmalar, çizdiği eskizler bulunmaktadır. Bu orana Altın Oran denmektedir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

<span class="mw-page-title-main">Pierre de Fermat</span> Fransız matematikçi ve avukat

Pierre de Fermat, neredeyse eşitlik (“adequality”) tekniği de dahil olmak üzere sonsuz küçük hesaplara yol açan erken gelişmeler için yaptığı katkılarla bilinen bir Fransız matematikçiydi. Özellikle, eğri çizgilerin en büyük ve en küçük koordinatlarını bulmanın özgün bir yöntemini keşfetmesiyle tanınır; bu, o zamanlar bilinmeyen diferansiyel kalkülüsünkine benzer ve sayı teorisi üzerine yaptığı araştırmadır. Analitik geometri, olasılık ve optiğe kayda değer katkılarda bulundu. En çok ışık yayılımı hakkındaki Fermat ilkesi ve Diophantus'un Aritmeticasının bir kopyasının kenarındaki bir notta açıkladığı sayı teorisindeki Fermat'nın Son Teoremi ile tanınır. Aynı zamanda Fransa'nın Toulouse Parlamentosu'nda avukattı.

<span class="mw-page-title-main">Öklid</span> Yunan matematikçi, aksiyomatik geometrinin mucidi

Öklid (Grekçe: Εὐκλείδης Eukleídēs; MÖ 330 - 275 yılları arasında yaşamış, İskenderiyeli bir matematikçidir. Megaralı Öklid'den ayırmak için bazen İskenderiyeli Öklid olarak anılır, genellikle "geometrinin kurucusu" veya "geometrinin babası" olarak anılan bir Yunan matematikçiydi. Ptolemy I döneminde İskenderiye'de aktifti. Elemanlar, yayınlandığı zamandan 19. yüzyılın sonlarına veya 20. yüzyılın başlarına kadar matematik öğretimi için ana ders kitabı olarak hizmet veren, matematik tarihindeki en etkili çalışmalardan biridir. Elemanlar’da, Öklid, küçük bir aksiyom setinden, şimdi Öklid geometrisi olarak adlandırılan şeyin teoremlerini çıkardı. Öklid ayrıca perspektif, konik kesitler, küresel geometri, sayı teorisi ve matematiksel kesinlik üzerine eserler yazdı.

<span class="mw-page-title-main">Apollonios (Pergeli matematikçi)</span> Konik kesitler üzerine yazılarıyla tanınan antik Yunan coğrafyacı ve astronom

Pergeli Apollonius, konik kesitler üzerindeki çalışmaları ile tanınan Antik Yunan geometri uzmanı ve astronom. Öklid ve Arşimet'in konuya katkılarından başlayarak, onları analitik geometrinin icadından önceki duruma getirdi. Elips, parabol ve hiperbol terimlerinin tanımları bugün kullanımda olanlardır.

Hiperbolik geometri, Öklid geometrisinden bir aksiyomla ayrılır. Öklid'in paralel aksiyomunun tersini doğru olarak kabul eden geometride bir doğrunun dışındaki bir noktadan birden çok (sonsuz) tane paralel doğru geçebilir. Bunun anlamı hiperbolik geometride Öklid geometrisinin aksine herhangi bir açı oluşturmak için ışınların, doğru ve doğru parçalarının kesişmesine gerek yoktur. Bunun yerine düz olmayan tek bir doğrunun varolması yeterlidir. Ayrıca bir üçgenin iç açıları toplamı her zaman iki tane dik açıdan küçüktür.

<span class="mw-page-title-main">Dik açı</span> 90° açı (π/2 radyan): düz bir doğrunun oluşturduğu açıyı (180°) iki yarıya bölen açı

Geometri ve trigonometride, bir dik açı, bir çeyrek dönüşe tam olarak 90° (derece) bir açıdır. Bir ışın, uç noktası bir doğru üzerinde olacak şekilde yerleştirilirse ve bitişik açılar eşitse, o zaman bunlar dik açılardır. Terim, Latince angulus rectus’tan öykünmedir; burada rectus, yatay bir taban çizgisine düşey olan dikey manasında "dik (direk)" anlamına gelir.

<span class="mw-page-title-main">Yunan matematiği</span> Eski Yunanların Matematiği

Yunan matematiği, Doğu Akdeniz kıyılarında MÖ 7. yüzyıldan MS 4. yüzyıla kadar uzanan Arkaik dönemden Helenistik ve Roma dönemlerine kadar yazılan matematik metinleri ile ortaya çıkan fikirleri ifade eder. Yunan matematikçiler, İtalya'dan Kuzey Afrika'ya tüm Doğu Akdeniz'e yayılmış şehirlerde yaşadılar, ancak kültür ve dil açısından birleştiler. "Matematik" kelimesinin kendisi Antik Yunancadan türemiştir: Grekçe: μάθημα: máthēma Yunanca telaffuz: [má.tʰɛː.ma] Yunanca telaffuz: [ˈma.θi.ma], "eğitim konusu" anlamına gelir. Kendi iyiliği için matematik çalışması ve genelleştirilmiş matematik teorilerinin ve kanıtlarının kullanılması, Yunan matematiği ile önceki uygarlıkların matematiği arasındaki önemli bir farktır.

<span class="mw-page-title-main">Desargues teoremi</span>

Projektif geometride, Desargues teoremi, adını Girard Desargues'den alır, şunu belirtir:

İki üçgen, ancak ve ancak merkezi olarak perspektif içindeyse eksenel olarak perspektif içindedir.
<i>Öklidin Elementleri</i> Öklidin matematik hakkındaki bir incelemesi

Öklid'in Elementleri İskenderiye'li Antik Yunan Öklid'e atfedilmiş 13 geometri kitabı bütünüdür. Öklid'in Elementler'i, tanımlar, aksiyomlar, önermeler ve bu önermelerin ispatlarından oluşur. Konuları iki ve üç boyutlu şekillerde öklidyen geometri, sayı teorisini, perspektif, konik kesitler, küresel geometri ve kuadrik yüzeyleri içerir. En eski geniş çaplı matematiksel tez olan Elementler hala ders kitabı olarak kullanılmaktadır. Kitapta kullanılan aksiyomatik yöntem birçok filozof ve matematikçiyi etkilemiştir.

Bu, "Antik Yunan matematikçilerinin zaman çizelgesi"dir..

<span class="mw-page-title-main">Matematik tarihi</span> matematik biliminin tarihi

Matematik tarihi, öncelikle matematikteki keşiflerin kökenini araştıran ve daha az ölçüde ise matematiksel yöntemleri ve geçmişin notasyonunu araştıran bir bilimsel çalışma alanıdır. Modern çağdan ve dünya çapında bilginin yayılmasından önce, yeni matematiksel gelişmelerin yazılı örnekleri yalnızca birkaç yerde gün ışığına çıktı. MÖ 3000'den itibaren Mezopotamya eyaletleri Sümer, Akad, Asur, Eski Mısır ve Ebla ile birlikte vergilendirmede, ticarette, doğayı anlamada, astronomide ve zamanı kaydetmede/takvimleri formüle etmede aritmetik, cebir ve geometri kullanmaya başladı.

<span class="mw-page-title-main">Geometri tarihi</span> Geometrinin tarihsel gelişimi

Geometri, mekansal ilişkilerle ilgilenen bilgi alanı olarak ortaya çıkmıştır. Geometri, modern öncesi matematiğin iki alanından biriydi, diğeri ise sayıların incelenmesi yani aritmetikti.

Bu, saf ve uygulamalı matematik tarihinin bir zaman çizelgesidir.

Bu sayfa teoremlerin bir listesidir. Ayrıca bakınız:

<span class="mw-page-title-main">Geometricilerin listesi</span> Vikimedya liste maddesi

Bir geometrici, çalışma alanı geometri olan matematikçidir.

<span class="mw-page-title-main">Geometrinin ana hatları</span> Geometriye genel bir bakış ve konu rehberi̇

Geometri, şekil, boyut, şekillerin göreceli konumu ve uzayın özellikleri ile ilgili sorularla ilgilenen bir matematik dalıdır. Geometri, en eski matematiksel bilimlerden biridir.

Aşağıda geometri'deki önemli gelişmelerin bir zaman çizelgesi verilmiştir:

Bu üçgen konuları listesi, geometriciler tarafından incelenen idealleştirmelerde veya Pascal üçgeni veya üçgen matrisler gibi üçgensel dizilerde olduğu gibi soyut olarak veya fiziksel uzayda somut olarak geometrik şekille ilgili şeyleri içerir. Kelimenin geometrik şekle atıfta bulunmadığı aşk üçgeni gibi metaforları içermez.