İçeriğe atla

Genlik modülasyonu

Ses,AM ve FM sinyalleri animasyonu.
Sinyal FM veya AM yöntemi ile taşınabilir.

Genlik modülasyonu İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türüdür. Uluslararası literatürde AM kısaltmasıyla gösterilir. Dilimizde ise, zaman zaman GM kısaltması kullanılmaktadır. Bu modülasyon türü 1906 yılında ilk defa Kanadalı mühendis Reginald Fessenden tarafından (1866-1932) geliştirilmiştir.[1]

Modülasyonun esasları

Modülasyon, yüksek frekanslı bir sinyalin kimi özelliklerinin iletilmek istenen bilgi sinyaline bağlı olarak değiştirilmesidir (Buna kodlanma da denilebilir.). Yüksek frekanslı sinyale, taşıyıcı denilir. Bu sinyal sinüs veya darbe sinyalidir. Taşıyıcının türü ve taşıyıcının değişen özelliklerine bağlı olarak modülasyonun pek çok türü vardır.

Genlik modülasyonunda, taşıyıcı sinüs sinyalidir. Yayın yapan tesiste, yani vericide taşıyıcı sinüs sinyalinin genliği bilgi sinyaline bağlı olarak değiştirilir. Bu işlemi yapan devreye modülatör denir. Alıcıda ise bu işlemin tersi yapılır. Yani genlik değişikliği bilgi sinyaline çevrilir. Alıcıda yapılan işleme ise genlik demodülasyonu, bu işlemi yapan devreye ise demodülatör denir.

Modülatör

Genlik modülatörü olarak, pek çok devre kullanılabilir. Bütün modülatörlerin ortak özelliği, devrede doğrusal olmayan bir devre elemanı olmasıdır. Bu eleman transistör ya da diyot gibi bir eleman olabilir. Ancak, bu gibi elemanlar karakteristiklerinin doğrusal olmayan bölgesinde çalışmalıdır. Doğrusal olmayan bir elemana iki farklı sinyal (bilgi ve taşıyıcı) uygulandığı takdirde, devre çıkışında pek çok ürün yer alır. Genlik modülasyonda önemli olan iki sinyalin çarpılması sonucu oluşan ürünlerdir. Bu açıdan genlik modülatörü, sinyal çarpıcı devre olarak görülebilir.

Bilgi sinyali ve taşıyıcı sinyal

İletilmek istenen bilgi sinyali; ses sinyali, görüntü sinyali veya data olabilir. Bu sinyal genellikle değişken frekanslı ve çok harmonikli bir sinyaldir. Ancak bu sinyalin bir kosinüs dalgasıyla ifade edilebileceği varsayılırsa,

Taşıyıcı sinyal bir osilatörde üretilir:

Burada S ve A sırasıyla bilgi ve taşıyıcı genlikleridir.

ω açısal frekanstır.

Bu iki sinyal modülatör olarak çalışan bir çarpıcı devreye uygulanırsa çarpıcı devre çıkışı;

Trigonometrik özdeşliklerden yararlanılarak bu ilişki aşağıdaki gibi de yazılabilir:

Görüldüğü gibi, çarpıcı çıkışında ve açısal frekanslarında iki sinyal vardır. (Frekans olarak ve .) Bu iki sinyale yan bant, yapılan modülasyona ise taşıyıcısı bastırılmış genlik modülasyonu veya çift yan bant modülasyonu (DBS) denilir.

Ancak uygulamada, bilgi sinyali genliği çarpıcıya girmeden önce, sabit genlikli bir gerilimle (DC) toplanır. (Şayet bilgi sinyali genliği DC genliğine göre normalize edilmiş sayılırsa, DC genliği 1 volt olarak kabul edilebilir.):

Bu durumda çarpıcı çıkışında ve frekanslarındaki sinyallere ek olarak frekansında bir sinyal daha vardır. Bu tür modülasyon klasik, yani taşıyıcısı bastırılmamış genlik modülasyonudur. İki modülasyon türü arasındaki fark, ilkinde bütün enerjinin yan bantlarda, yani ve frekanslarında yoğunlaşması, ikincisinde ise enerjinin en az yarısının taşıyıcı frekansında olmasıdır. Bilgi sadece yan bantlarda olduğuna göre, çift yan bant modülasyonu daha verimli bir modülasyon türüdür. Ne var ki, alıcıda taşıyıcı bilgisi olmadan demodülasyon yapmak, yani bilgi sinyalini elde etmek çok daha karmaşık devreler gerektirdiği için, yayıncılıkta klasik genlik modülasyonu kullanılır.

Modülasyon oranı

Klasik genlik modülasyonunda, bilginin taşıyıcıyı ne oranda modüle ettiği önemlidir. Bu orana modülasyon oranı veya modülasyon indeksi denilir.Oran m harfiyle gösterilir ve % cinsinden verilir.

Bu oran bilgi sinyali maksimum genliğinin sabit genlikli sinyale olan oranıdır.Oran maksimum % 100 olabilir. Daha yüksek bir oran hem vericinin aşırı yüklenmesine, hem de bilgi sinyalinin bozulmasına (Halk arasında ses çatlaması denilen bozukluğa) yol açar.

Dalga şekli

Üstten itibaren 1.Bilgi sinyali, 2.Taşıyıcı sinyal, 3. Çift yan bant modüleli sinyal, 4. Klasik (taşıyıcısı bastırılmamış) genlik modüleli sinyal.

Yandaki şekilde, genlik modülasyonunda dalga şekilleri gösterilmiştir. Bu dalga şekilleri uygun bir osiloskopta görülebilir.

  • En üst dalga şekli bilgi sinyaline aittir. Bu örnekte, bilgi sinyali olarak tek frekanslı bir sinyal gösterilmiştir. Gerçi bilgi sinyali tek frekanslı olmaz. Ama bu sinyaler bir dizi trigonometrik dalga ile ifade edilebilirler.
  • İkinci dalga şekli taşıyıcıya aittir. Taşıyıcı vericideki bir osilatörde üretilir. Bu örnekte, taşıyıcı sinyalin frekansı bilgi sinyali frekansının yirmi misli seçilmiştir.
  • Üçüncü dalga şekli çift yan bant modülatörü çıkışına aittir.
  • Dördüncü dalga şekli ise genlik modülatörü çıkışını göstermektedir. Bu örnekte modülasyon oranı % 50 seçilmiştir. Nitekim, bilgi sinyali minimum değerdeyken bile, dalga şeklinde taşıyıcının devam ettiği görülmektedir.

Çift yan bant ve klasik genlik modülasyon dalga şekli karşılaştırılırken, her iki dalga şeklinde de aynı zaman ekseninin kullanıldığına dikkat edilmelidir.

RF bant genişliği

Gerek klasik genlik modülasyonu gerekse çift yan bant modülasyonunda RF bant genişliği, bilgi bandı genişliğinin iki mislidir. Taşıyıcı frekansın her iki tarafında, bilgi bandına özdeş birer bant simetrik olarak oluşur.

Uzun ve orta dalga radyo yayınlarında klasik genlik modülasyonu kullanılır. Bu bantlarda ses sinyali bant genişliği 5 kHz de sınırlanmıştır. Bu durumda RF bant genişliği de 10 KHz dir (5 kHz gerek insan gerekse müzik aletlerinin ürettiği bütün seslerin iletilmesi için yeterlidir. Ancak müzik kalitesi için gerekli olan harmoniklerin bir bölümü, bu bandın dışında kalırlar. Bu sebepten kaliteli müzik için daha geniş bilgi bandına uygun olan frekans modülasyonu tercih edilir.

Modülasyon türlerinin kodları

Genlik modülasyononunun pek çok türü olduğundan Uluslararası Telekomünikasyon Birliği (International Telcommunication Union) modülasyon türlerinin tanımlanması için tanıtım kodları geliştirmiştir.

İlk harf modülasyon türünü ifade eder A Genlik modülasyonu anlamına gelir. A harfini izleyen 3 bilginin ses olduğunu, 5 ise görüntü olduğunu ifade eder. Rakamı izleyen harf ise alt tür tanımlaması yapar.

A ile SSB, B ile DSB, C ile VSB anlaşılır. Klasik genlik modülasyonu için eski metinlerde harf kullanılmıyordu. Ancak 1982 den sonra E harfi kullanılmaya başlanmıştır.

DSB de (çift yan bant) yukarıda belirtildiği gibi taşıyıcı bastırılmıştır. SSB de (tek yan bant) taşıyıcının yanı sıra bir yan bant ta bastırılmıştır. VSB de (artık yan bant) taşıyıcı mevcuttur. Yan bantlardan biri kısmen bastırılmıştır.

Üreticiler çoğu kez RF bant genişliğini de bu kodun önünde gösterirler. Mesela 10A3 klasik genlik modülasyonu ile radyo yayını anlamına gelir. 10 sayısı kHz cinsinden toplam RF bant genişliğini verir.

Ayrıca bakınız

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Radyo</span> elektromanyetik radyo dalgalarındaki ses modülasyonunu önce elektronik ortama sonra da sese çeviren elektronik alet

Radyo, elektromanyetik radyo dalgalarındaki ses modülasyonunu önce elektronik ortama sonra da sese çeviren elektronik alet. Türk Dili dergisinde Kırgız Türkçesinde radyo anlamında kullanılan үналгы /ünalgı/ sözünün Türkiye Türkçesinde kullanılması da gündeme getirilmiştir. Radyoyu Marconi icat etmiştir.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Modülasyon</span>

Modülasyon ya da kipleme, bir taşıyıcı sinyal ile bilgi sinyalini birleştirmekten ibaret olan ve iletişim teknolojisinde (yayıncılıkta) kullanılan bir yöntemdir. Yöntem, başlarda anten yoluyla yapılan yayınlar için öngörülmüş ise de, günümüzde kablolu, kablosuz her tür iletişimde kullanılmaktadır. Çok alçak frekanslı sinyallerin çok uzak mesafelere gönderilmesi güçtür. Bu nedenle alçak frekanslı sinyalin, yüksek frekanslı taşıyıcı bir sinyal üzerine bindirilerek uzak mesafelere taşınması sağlanabilir. Bu noktada kiplemeye başvurulur.

<span class="mw-page-title-main">Titreşim</span>

Titreşim bir denge noktası etrafındaki mekanik salınımdır. Bu salınımlar bir sarkaçın hareketi gibi periyodik olabileceği gibi çakıllı bir yolda tekerleğin hareketi gibi rastgele de olabilir.

<span class="mw-page-title-main">Analog televizyon vericisi</span>

Televizyon vericileri televizyon yayını yapan, yani stüdyolarda oluşturulan haber ve programların konutlardaki alıcılara ulaştırılmasını sağlayan en önemli teknik araçlardır. kablo ve uydu gibi alternatif yayın araçlarıyla karıştırmamak için TV vericileri bazen "yer vericileri" olarak da isimlendirilir.

Genlik, periyodik harekette maksimum düzey olarak tanımlanabilir. Genlik, bir dalganın tepesinden çukuruna kadar olan düşey uzaklığın yarısıdır. Genlik kavramı ışık, elektrik, radyo dalgaları gibi konuları da kapsayan fen bilimleri alanında kullanılır.

Karesel genlik modülasyonu iletişim teknolojisinde aynı zamanda iki farklı bilgiyi iletmek amacıyla kullanılan bir modülasyon türüdür..

Renk sinyali renkli televizyon yayıncılığında görüntü sinyalinin bir bileşenidir.

FM radyo yayınlarında kanal bant genişliğini hesaplamak için kullanılan ampirik formül.

<span class="mw-page-title-main">Frekans modülasyonu</span> frekans modülasyonu, İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türü

Frekans modülasyonu, İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türüdür. FM kısaltmasıyla gösterilir. Bu modülasyon türü 1933 yılında Amerikalı mühendis Edwin Howard Armstrong (1890-1954) tarafından geliştirilmiştir.

<span class="mw-page-title-main">Ara frekans</span>

Ara frekans telekomünikasyonda verici ve alıcı cihazlarında kullanılan bir sinyaldir. Bu sinyalin kullanıldığı cihazlar teknolojide süperheterodin (superheterodyne) olarak tanımlanırlar.

Mikser Elektronikte, özellikle yayıncılıkta kullanılan ve sinyal frekansını değiştiren bir devredir.

Radyo frekansı yayıncılıkta bir bilgi sinyali ile modüle edilmiş olan taşıyıcı sinyal anlamına gelir. Ancak, bu isim zamanla modüle edilsin, edilmesin, yüksek frekans anlamına da kullanılmaya başlanmıştır.

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

Genlik modülasyonunun bir türü. Bu yöntem ile televizyon yayıncılığında aynı yayın bandını daha çok sayıda yayıncının kullanabilmesi amaçlanmıştır.

Distorsiyonmetre elektronikte harmonik distorsiyon oranını ölçmek için kullanılan bir ölçü aletidir.

Frekans sapması Frekans modülasyonu tekniği ile yapılan iletişimde taşıyıcı frekansının girişteki bilgiye bağlı olarak değişmesidir. Girişte hiçbir sinyal olmadığı durumda taşıyıcı frekansa merkez frekans denilir. Girişteki sinyale bağlı olarak bu frekans ta değişir. Ancak taşıyıcı genliği sabittir. Bu sayede genliğe binen parazit alıcı tarafından algılanmaz.

Renk öldürücü televizyon alıcılarında siyah-beyaz yayını bozan renkli sinyal bileşenlerini silmeye yarayan bir yardımcı devredir.

Diferansiyel faz renkli televizyon yayıncılığında renklerin doğru okunması için ölçülmesi ve düzeltilmesi gereken bir değerdir.

Nyquist filtresi televizyon yayıncılığında, alıcılarda kullanılan bir elektronik filtre türüdür. Filtre adını İsveçli mühendis Harry Nyquist'ten (1889-1976) almıştır