Laplasyen
, skaler bir
alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.
Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.
Fourier dönüşümü, fizik, mühendislik ve matematikte, bir fonksiyonu, içerdiği frekansların belirtildiği bir biçime dönüştüren bir integral dönüşümüdür. Dönüşümün çıktısı, frekansa bağlı karmaşık değerli bir fonksiyondur. "Fourier dönüşümü" terimi, hem bu karmaşık değerli fonksiyon için hem de buna karşılık gelen matematiksel operasyon için kullanılmaktadır. Bu ayrımın netleştirilmesi gerektiğinde, Fourier dönüşümü bazen orijinal fonksiyonun frekans uzayında temsili olarak adlandırılır. Fourier dönüşümü, bir müzik akorunun sesini, onu oluşturan tonlara ayrıştırmaya benzer.

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.
Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

Olasılık kuramı ve istatistik bilim kollarında, logistik dağılım bir sürekli olasılık dağılımdır. Logistik dağılımın yığmalı dağılım fonksiyon bir logistik fonksiyondur ve bu fonksiyon logistik regresyon ve ileriye-geçiş-sağlayan sinirsel ağlar konularında da rol oynar.

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre
olur.
Black-Scholes modeli, finansal matematikte bir opsiyon fiyatlama modelidir. İsmini, bu modeli 1973 yılında yayınlayan Fischer Black ve Myron Scholes'tan almıştır. Bu opsiyon modelinin sonucunda, halen opsiyon fiyatlamada piyasa katılımcılarınca yoğun olarak kullanılmakta olan Black-Scholes formülü elde edilmiştir. Black-Scholes modeli, aslında rassal hareketler izleyen sıvı moleküllerini ortaya koyan Brown hareketinin hisse fiyatlarına ve finansal hareketlere uyarlanması sonucu ortaya çıkmıştır. Daha önce bu uyarlamanın öncüsü sayılabilecek varsayımı Louis Bachelier 1900'de "Théorie de la spéculation" başlığıyla yazdığı doktora tezinde yapmıştır. Yine, benzer uyarlamalar Paul Samuelson, Sheen Kassouf, Edward O. Thorp and Case Sprenkle tarafından da yapılmıştır. Ancak, Black ve Scholes'un zamandaşlarının önüne geçtiği nokta opsiyon fiyatlarına ihtiyaç duyan opsiyon piyasa katılımcılarına piyasada gözlemlenen veri ve değişkenlerle pratik bir şekilde hesaplanabilen analitik bir formül ortaya koymalarıdır.

Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:


Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.
Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan a, b ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

Pareto dağılımı, olasılık kuramı ve istatistik bilim dallarında birçok pratik uygulaması bulunan ve "küçük" bir nesnenin bir "büyük" nesneye dağılımında kararlılık elde edildiği hallerde kullanılan bir sürekli olasılık dağılımı veya bir güç kuramıdır. İlk olarak bir İtalyan iktisatçısı olan Vilfredo Pareto tarafından ekonomilerde bireylerin servet dağılımını göstermek için kullanılmıştır. İktisat bilim dalı dışında bu dağılım Bradford dağılımı adı altında da bilinmektedir.

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.
İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.
Olasılık kuramı ve istatistik bilim dallarında Çebışov eşitsizliği veya Bienaymé-Çebışov eşitsizliği özellikle olasılık ve daha nadiren gerçek veri setleri için bir teori sonucu olarak kullanılır.

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:
