İçeriğe atla

Gen ifadesinin düzenlenmesi

Gen İfadesi Düzenlenmesi Diyagramı

Gen ifadesinin düzenlenmesi ya da gen ifadesinin denetimi, hücrelerin ve virüslerin genlerindeki bilgiyi gen ürünlerine çevirmesini kapsayan süreçler için kullanılan bir terimdir. İşlevsel bir genin ürünleri RNA veya protein olabilir; bilinen mekanizmaların en temeli protein kodlayan genlerin düzenlenmesidir. Gen ifadesinin, DNA-RNA transkripsiyonundan, proteinin translasyon sonrası değişimlerine kadar olan herhangi bir adımı değiştirilip, ayarlanabilmektedir.

Gen düzenlenmesi, hücrenin ihtiyacı olduğunda proteinlerin sentezlenmesine izin vererek bir canlının değişkenliğini ve uyumunu artırabildiği için; virüsler, prokaryotlar ve ökaryotlar için gerekli bir işleyiştir. Dahası; gen düzenlenmesi, hücresel farklılaşma ve morfogenezin işleyişlerini, çok hücreli canlılarda hücrelerin farklı tiplerinin hepsi temelde aynı genom dizisine sahip olmalarına karşın, farklı gen ifadelerini sergiledikleri farklı hücre tiplerinin oluşumuna öncülük ederek kontrol etmektedir.

Gen denetimi sisteminin Jacques Monod tarafından ilk keşfedilen örneği, sadece laktozun varlığı ve glukozun yokluğunda E.coli tarafından ifade edilen proteinlerle ve laktoz metabolizmasıyla ilişkili olan lac operonudur.

Gen ifadesinin düzenleme basamakları

Gen ifadesinin, DNA_RNA transkripsiyonundan, proteinin translasyon sonrası değişimlerine kadar olan herhangi bir adımı değiştirilip, ayarlanabilir. Gen düzenlemesinin yapıldığı basamakların listesi şu şekildedir:

  • Kromatin bölgeleri
  • Transkripsiyon
  • Transkripsiyon sonrası değişimler
  • RNA taşınımı
  • Translasyon
  • mRNA bozulumu
  • Translasyon sonrası değişimler

DNA'nın değişimi

Ökaryotlarda, DNA'nın geniş bölgelerine erişim, DNA metilasyonu, ncRNA ya da DNA'ya bağlanan proteinler tarafından yönlendirilen, histon modifikasyonlarının sonucu olarak değiştirilebilen kromatin yapısına bağlıdır.

Kimyasal

DNA metillenmesi gen susturmanın yaygın bir yöntemidir. DNA sıklıkla, CpG dinükleotid dizisindeki (kümelendiklerinde "CpG adacıkları" olarak da bilinir) sitozin nükleotidlerinde bulunan metiltransferaz enzimleri tarafından metillenir. Metillenmiş sitozin kalıntıları bu işlemle değiştirilemezken, metillenmemiş olanlar urasile dönüştürülebilir. Normal olmayan metilasyon kalıpları karsinogenez ile ilişkilendirilmiştir.

DNA'nın metilasyona verilen (bir promotor olabilen) bölgesinin örnek analizi, bisülfit haritalaması olarak bilinen yöntemle yapılabilir. DNA dizilemesi ya da miktarı belirleyen SNPlerle geliştirilmiş Pyro-dizileme (Biyotaj), MassArray (Sequenom) gibi) metotların analizleri arasındaki farklılıklar, CG dinükleotidindeki C/T miktarlarını yaklaşık olarak ölçmelerinden kaynaklanmaktadır.

Yapısal

DNA'nın yazılımı (transkripsiyonu), kendi yapısı tarafından belirlenmektedir. Genelde, DNA paketinin yoğunluğu, yazılımın sıklığını belirleyen etkendir. Oktamerik protein kompleksleri "nükleozom" olarak isimlendirilir ve DNA'nın süper-kıvrımlarının bir miktarından sorumludur ve bu kompleksler fosforilasyon ya da daimi olan değiştirme yapan metilasyon olarak bilinen süreçlerle düzenli olarak değiştirilebilmektedir. Böyle değişimlerin genin ifadesinin seviyelerindeki az veya çok kalıcı değişimlerden sorumlu olduğu düşünülmektedir.

Histon asetilasyonu da transkripsiyondaki önemli başka bir süreçtir. CREB bağlayan protein gibi histon asetiltransferaz enzimleri de (HATlar), transkripsiyonun devam etmesine izin vererek DNA'yı histon kompleksinden ayırır.

Çoğunlukla DNA metilasyonu ve histon deasetilasyonu gen susturmada birlikte çalışırlar. Bu ikilinin birlikte çalışması, gen ifadesini zayıflatarak, DNA'nın daha yoğun paketlenmesinin sinyali gibi görünmektedir.

Transkripsiyonun Düzenlenmesi

Transkripsiyonun düzenlenmesi transkripsiyonun gerçekleşme zamanını ve oluşacak RNA miktarını kontrol eder. Bir genin RNA polimeraz tarafından transkripsiyonu en az beş mekanizma tarafından düzenlenebilir:

  • Özgül faktörler bağlanma uygunluğunu artırarak ya da azaltarak RNA polimerazın belli bir promotor ya da promotor grubuna özgüllüğünü değiştirir (örn. prokaryotik transkripsiyon da kullanılan sigma faktör).
  • Baskılayıcılar DNA ipliğinde promotor yakınında ya da promotor bölgesinde bulunan kodlanmayan dizilere bağlanarak RNA polimerazın iplik boyunca ilerleyişini ve böylece genin ekspresyonunu engellerler.
  • Genel transkripsiyon faktörleri Bu transkripsiyon faktörleri RNA polimerazı protein kodlayan bir dizinin başlangıcına yerleştirir ve sonra mRNA'yı transkribe etmesi için polimerazı serbest bırakır..
  • Aktivatörler RNA polimeraz ve belli bir promotor arasındaki etkileşimi artırır, genin ekspresyonunu teşvik eder.Aktivatörler bunu RNA polimerazın promotora cazibesini artırarak (direkt RNA polimerazın alt birimleri ile etkileşime girerek ya da indirekt olarak DNA'nın yapısını değiştirerek) yaparlar.

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">DNA</span> Canlıların genetik bilgilerini barındıran molekül

Deoksiriboz nükleik asit veya kısaca DNA, tüm organizmaların ve bazı virüslerin canlılık işlevleri ve biyolojik gelişmeleri için gerekli olan genetik talimatları taşıyan bir nükleik asittir. DNA'nın başlıca rolü bilgiyi uzun süre saklamasıdır. Protein ve RNA gibi hücrenin diğer bileşenlerinin inşası için gerekli olan bilgileri içermesinden dolayı DNA; bir kalıp, şablon veya reçeteye benzetilir. Bu genetik bilgileri içeren DNA parçaları gen olarak adlandırılır. Bazı DNA dizilerinin yapısal işlevleri vardır, diğerleri ise bu genetik bilginin ne şekilde kullanılacağının düzenlenmesine yararlar.

<span class="mw-page-title-main">Protein biyosentezi</span>

Protein biyosentezi, hücrenin protein sentezlenmesi için gereken bir biyokimyasal süreçtir. Bu terim bazen sadece protein translasyonu anlamında kullanılsa da transkripsiyon ile başlayıp translasyonla biten çok aşamalı bir süreçtir. Prokaryotlarda ve ökaryotlarda ribozom yapısı ve yardımcı proteinler bakımından farklılık göstermesine karşın, temel mekanizma korunmuştur.

<span class="mw-page-title-main">Transkripsiyon (genetik)</span> bir DNA parçasının RNAya kopyalanması süreci

Transkripsiyon, yazılma veya yazılım, DNA'yı oluşturan nükleotit dizisinin RNA polimeraz enzimi tarafından bir RNA dizisi olarak kopyalanması sürecidir. Başka bir deyişle, DNA'dan RNA'ya genetik bilginin aktarımıdır. Protein kodlayan DNA durumunda, transkripsiyon, DNA'da bulunan genetik bilginin bir protein veya peptit dizisine çevirisinin ilk aşamasıdır. RNA'ya yazılan bir DNA parçasına "transkripsiyon birimi" denir. Transkripsiyonda hata kontrol mekanizmaları vardır, ama bunlar DNA çoğalmasındakinden daha az sayıda ve etkindirler; dolayısıyla transkripsiyon DNA çoğalması kadar aslına sadık değildir.

<span class="mw-page-title-main">DNA onarımı</span> Hücresel mekanizma

DNA onarımı, DNA moleküllerindeki hataları onarım mekanizmalarını tanımlamaktadır. İnsan hücrelerinde metabolik aktiviteler ve çevresel faktörler sonucu günde 1 milyon hücrenin zarar görmesi olasıdır. Bu etkenler, DNA'nın yapısını ve dahası diğer nesillere aktarılan genetik bilgiyi değiştirebilirler. Bu değişimler yararlı olabileceği gibi, ölümcül sonuçlara neden olabilecek kadar da zararlı olabilir. Bu yüzden, bütün canlı hücreleri, evrim süreçleri boyunca nesillere değişmeden aktarılması gereken DNA molekülünü koruma mekanizmaları geliştirmişlerdir.

RNA polimerazlar, bir DNA veya RNA molekülündeki bilgiyi RNA molekülü olarak kopyalayan bir enzimler ailesidir. Bir gende yer alan bilginin RNA molekülü olarak kopyalanma işlemi transkripsiyon olarak adlandırılır. Hücrelerde RNAP genlerin RNA zincirleri halinde okunmasını sağlar. RNA polimeraz enzimleri, tüm canlılarda ve çoğu virüste bulunur. Kimyasal bir deyişle, RNAP, bir nükleotidil transferaz enzimidir, bir RNA molekülünün üç ucunda ribonükleotitlerin polimerleşmesini sağlar.

<span class="mw-page-title-main">Gen ifadesi</span> Bir gen dizisinin olgun bir gen ürününe veya ürünlerine dönüştürülmesi

Gen ifadesi ya da gen ekspresyonu, DNA dizisi olan genlerin, fonksiyonel protein yapılarına dönüşmesi süreci için kullanılan bir terimdir. Basitçe, bu durum genlerin açık (aktif) olup olmadıkları olarak da tanımlanabilir.

Moleküler biyolojide bir transkripsiyon faktörü genlerin transkripsiyonunu düzenlemek için DNA üzerinde belli bir diziye bağlanabilen bir proteindir. Bunlar diziye-özgün DNA bağlanma proteini olarak da adlandırılır. Transkripsiyon faktörleri tek başına veya bir komplekste yer alan başka proteinlerle beraber, RNA polimeraz tarafından bir genin transkripsiyonunu ya kolaylaştırırlar veya engeller.

Epigenetik, biyolojide, DNA dizisindeki değişikliklerden kaynaklanmayan ama aynı zamanda ırsi olan gen ifadesi değişikliklerini inceleyen bilim dalıdır. Diğer bir deyişle, ırsi (kalıtımsal) olup genetik olmayan fenotipik varyasyonları incelemektedir. Bu değişiklikler hücreyi ya da organizmayı doğrudan etkilemektedir ancak, DNA dizisinde hiçbir değişiklik gerçekleşmemektedir.

DNA metilasyonu DNA'nın bir kimyasal değişimdir, kalıtsal olup sonradan ilk dizi geri gelecek şekilde çıkartılabilir. Bu özelliği nedeniyle epigenetik koda aittir ve en iyi karakterize edilmiş epigenetik mekanizmadır. Metilasyon tüm virüslerde görülen, öz ile öz-başka ayrımına yarayan bir yetenek olduğu için epigenetik kodun, kadim viral enfeksiyon olaylarından kalma bir mekanizma olabileceği öne sürülmüştür.

Promotör, biyolojide genlerin transkripsiyonunu başlatan, DNA'parçasıdır. Promotörler, ilgili genin transkripsiyon başlangıç bölgesine yakın kısımlarda ve genle aynı DNA iplikçiği üzerinde bulunular. Promotörler, transkripsiyonunu başlattıkları gen dizisinden önce karşıt tamamlayıcı DNA dizisinin 3' ucuna doğru olan kısımda bulunurlar. Promotörler genelde farklı nukleotid uzunluklarına sahip olmakla beraber, 100 ila 1000 nukleotid çifti uzunluğunda olurlar.

Moleküler biyolojide anlam, DNA ve RNA gibi nükleik asit moleküllerinde bulunan bilginin yönünün (polaritesinin) başka nükleik asitlerle karşılaştırılmasında kullanılan bir kavramdır. Hangi bağlamda kullanıldığına bağlı olarak "anlam" terimi farklı manalara gelebilir. Bir manasıyla "anlam", bir nükleik asidin protein kodlama özelliğidir. Bir diğer manasıyla "anlam", tek iplikli RNA virüslerinde, viriondan çıkan genomik RNA'nın doğrudan protein kodlayabilme özelliğidir. "Antianlamlı" nükleik asitlerden söz edilince, anlamlı bir mRNA'nın ifadesini engelleyen, komplemanter dizili bir nükleik asit kastedilir.

Kimyada metilasyon veya metillenme, bir kimyasal bileşiğe bir metil grubunun bağlanması veya sübstitüsyonudur. Bu terim kimyada, biyokimyada, toprak bilimlerinde ve hayat bilimlerinde yaygınca kullanılır.

<span class="mw-page-title-main">Hızlandırıcı</span>

Hızlandırıcı, genetikte, bir gen kümesindeki genlerin transkripsiyon hızının artmasını sağlayan, transkripsiyon faktörlerinin bağlandığı kısa bir DNA bölgesidir. Bir hızlandırıcının üzerine etki ettiği genlere özellikle yakın olması, hatta aynı kromozom üzerinde dahi olması gerekmez. Ökaryotik hücrelerde DNA'nın içinde bulunduğu kromatin kompleksi süpersarımlı bir haldedir ve bunun sonucu olarak yapısında burkulmalar vardır; öyle bir şekilde katlanmıştır ki, aralarındaki nükleotit sayısı bakımından uzak olan promotör ve onların hızlandırıcıları, geometrik anlamda birbirlerine yakın olabilirler. Bu sayede hızlandırıcı, genel transkripsiyon faktörleri ve RNA polimeraz II ile etkileşime girebilir. Bazı hızlandırıcıların kontrol ettikleri genin promotöründen birkaç yüz-bin baz çifti uzakta olduğu bulunmuştur. Hızlandırıcılar doğrudan promotöre bağlanmazlar, aktivatör proteinler tarafından bağlanırlar. Aktivatör proteinler, aracı kompleksi ile ile etkileşir, bu da polimeraz II ve genel transkripsiyon faktörlerini seferber edip transkripsiyonun başlamasını sağlar.

<span class="mw-page-title-main">Katabolit Aktivatör Protein</span>

Katabolit aktivatör protein, ,N-terminalde bir ligand bağlama alanı bulunduran her bir alt ünitesi ile çözelti içerisinde homodimer olarak bulunan bir transkripsiyonel aktivatördür, ayrıca proteinlerin dimerizasyonundan ve C-terminaldeki DNA bağlama alanından da sorumludur. 2 cAMP molekülü, proteinin DNA'ya affinitesini artıran allosterik efektörler gibi negatif işbirliği ve fonksiyonu ile dimerik CAP proteinine bağlanır. Hücre içerisine taşınan glukoz miktarı düşük olduğunda sitozolik cAMP seviyesi yükselir.

Heterokromatin, interfaz aşamasında yoğunlaşmış halde bulunan kromatindir. Heterokromatik bölgeler geç replikasyon yapma özelliğine sahiptir. Konstitütif ve fakültatif olmak üzere iki formu bulunmaktadır. Çoğu bitki kromozomunun sonu konstitütif heterokromatin içerir. Heterokromatin, birden fazla çeşitte gelen, sıkıca paketlenmiş bir DNA veya yoğun DNA formudur. Bu çeşitler, kurucu heterokromatinin ve fakültatif heterokromatinin iki ucu arasında bir süreklilik üzerinde uzanır. Her ikisi de genlerin ifadesinde yer alır. Sıkıca paketlendiğinden, polimerazlar tarafından erişilemediği ve bu nedenle kopyalanmadığı düşünülüyordu, ancak Volpe ve diğerleri ve diğer birçok makale, bu DNA'nın çoğunun gerçekten kopyalandığını, ancak sürekli olarak RNA kaynaklı transkripsiyonel susturma (RITS) yoluyla geri döndüğünü öne sürmekte. Elektron mikroskobu ve OsO4 boyama ile yapılan son çalışmalar, yoğun paketlemenin kromatinden kaynaklanmadığını ortaya koymaktadır

Ökaryotik transkripsiyon, ökaryotik hücrelerin DNA'da depolanan genetik bilgiyi RNA replika birimlerine kopyalamak için kullandıkları ayrıntılı bir işlemdir. Gen transkripsiyonu hem ökaryotik hem de prokaryotik hücrelerde görülür. Tüm farklı RNA tiplerinin transkripsiyonunu başlatan prokaryotik RNA polimerazının aksine, ökaryotlardaki RNA polimerazlar, her biri farklı bir gen tipini kodlayan üç varyasyona sahiptir. Bir ökaryotik hücre, transkripsiyon ve translasyon işlemlerini ayıran bir çekirdeğe sahiptir. Ökaryotik transkripsiyon, DNA'nın nükleozomlara ve daha yüksek dereceli kromatin yapılarına paketlendiği çekirdeğin içinde meydana gelir. Ökaryotik genomun karmaşık oluşu, kompleks ve çok çeşitli bir gen anlatım kontrol mekanizmasının varlığını gerektirir.

<span class="mw-page-title-main">Bakteriyel transkripsiyon</span>

Bakteriyel transkripsiyon, bakterilerdeki genetik materyalin mesajcı RNA transkriptlerinin, protein üretimi için çevrilmesi için üretildiği işlemdir. Ökaryotlardan farklı olarak, bakteriyel transkripsiyon ve translasyon sitoplazmada aynı anda gerçekleşebilir. Bu durum transkripsiyonun membranlı bir çekirdekte gerçekleştiği, translasyonun sitoplazmada çekirdeğin dışında gerçekleştiği ökaryotlarda mümkün değildir. Bakterilerde, genetik materyal, zarla kaplı bir çekirdekle çevrelenmez ve sitoplazmada ribozomlara erişime sahiptir.

Operon, genetikte tek bir promotörün kontrolü altında bir gen kümesi içeren DNA'nın işlevsel bir birimidir. Genler birlikte bir mRNA ipliğine yazılır ve daha sonra ya sitoplazmada birlikte translasyona uğrar veya ayrı ayrı translasyona uğrayan monosistronik mRNA'ları oluşturmak için her biri tek bir gen ürününü kodlayan birkaç mRNA ipliği gibi uçbirleştirmeye tabi tutulur. Bunun sonucu, operonda bulunan genler ya birlikte ifade edilirler ya da hiç ifade edilmezler. Bir operonu tanımlamak için birkaç genin birlikte transkripsiyonunu gerekir.

<span class="mw-page-title-main">Santral dogma (moleküler biyoloji)</span> Biyolojik bir sistem içindeki genetik bilgi akışının açıklanması

Moleküler biyolojinin santral (merkezi) dogması, biyolojik bir sistem içindeki genetik bilgi akışının bir açıklamasıdır. Orijinal anlamı bu olmasa da, genellikle "DNA RNA'yı, RNA proteini yapar" şeklinde ifade edilir İlk olarak 1957'de Francis Crick tarafından ifade edilmiş, 1958'de ise yayınlanmıştır.

<span class="mw-page-title-main">Litik döngü</span>

Litik döngü, viral üremenin iki döngüsünden biridir, diğeri lizojenik döngüdür. Litik döngü, enfekte olmuş hücrenin ve zarının tahrip olmasıyla sonuçlanır. Yalnızca litik döngüden geçebilen bakteriyofajlara virülan fajlar denir.