
Optik, ışık hareketlerini, özelliklerini, ışığın diğer maddelerle etkileşimini inceleyen; fiziğin ışığın ölçümünü ve sınıflandırması ile uğraşan bir alt dalı. Optik, genellikle gözle görülebilen ışık dalgalarının ve gözle görülemeyen morötesi ve kızılötesi ışık dalgalarının hareketini inceler. Çünkü ışık bir elektromanyetik dalgadır ve diğer elektromanyetik dalga türleri ile benzer özellikler gösterir.
İnterferometri bilgi çıkarımı için elektromanyetik dalgaların üst üste getirildiği tekniktir. İnterferometri, astronomi, fiber optik, mühendislik, optik, oşinografi, sismoloji, spektroskopi, kuantum mekaniği, nükleer ve parçacık fiziği, plazma, uzaktan algılama, biyomoleküler etkileşimler, yüzey profili, mikroakışkanlar, mekanik gerilme/gerilim ölçümü, velosimetri ve optimetri alanlarında önemli bir araştırma tekniğidir.

Lazer ışığın uyarılmış radyasyon ile yükseltilmesini sağlayan bir optik düzenektir. İsmini "Light Amplification by Stimulated Emission of Radiation" kelimelerinin baş harflerinden alır ve bu, "ışığın uyarılmış ışıma ile yükseltilmesi" anlamına gelir. İlk lazer, 1960 yılında Theodore Maiman tarafından Charles Townes ve Arthur L. Schawlow'un teorileri baz alınarak üretilmiştir. Lazerin ışıktan daha düşük mikrodalgafrekanslarında çalışan versiyonu olan "maser" ise Townes tarafından 1953 yılında bulunmuştur.

Barkod bir ışık kaynağının barkotlu yüzeye çarparak siyah çizgilerden daha az aralardaki beyaz boşluklardan daha fazla yansıyan ışığı çözümleyip elektriksel sinyallere çevirerek çalışan cihazdır. Düz tarayıcılar gibi, bir ışık kaynağı, bir lens ve optik işaretleri elektriksel sinyallere çeviren bir fotoiletken içerir. Ek olarak günümüzde üretilen tüm barkod okuyucular fotoiletken tarafından sağlanan barkod verisini analiz eden ve barkodun içeriğini tarayıcının çıkışına gönderen bir kod çözücü devre içerir.

Bilgisayarcılık, seslerin çoğaltılması ve video sektöründe optik disk düz, çembersel, genellikle polikarbonat bir disktir ve bunun üstündeki veriler depolanmış olarak çıkıntılar halinde içerisindeki düz bir yüzeyde bulunmaktadır. Bu verilere genellikle, disk üzerindeki özel bir maddenin bir lazer diyot vasıtasıyla ışıma yaptırılmasıyla erişilir. Çıkıntılar yansıyan lazer ışığının biçimini bozar.

Gama ışını veya gama ışıması, atom altı parçacıkların etkileşiminden kaynaklanan, belirli bir titreşim sayısına sahip elektromanyetik ışınımdır; genelde uzayda gerçekleşen çekirdeksel tepkimelerin sonucunda üretilirler. X ışınlarının ötesinde yer alırlar.

X ışınları veya Röntgen ışınları, 0,125 ile 125 keV enerji aralığında veya buna karşılık, dalgaboyu 10 ile 0,01 nm aralığında olan elektromanyetik dalgalar veya foton demetidir. 30 ile 30.000 PHz (1015 hertz) aralığındaki titreşim sayısı aralığına eşdeğerdir. X ışınları özellikle tıpta tanısal amaçlarla kullanılmaktadırlar. İyonlaştırıcı radyasyon sınıfına dahil olduklarından zararlı olabilirler. X ışınları 1895'te Wilhelm Conrad Röntgen tarafından Crookes tüpü (Hittorf veya Lenard tüpleri ile de) ile yaptığı deneyler sonucunda keşfedilmiştir. Klasik fizik sınırları içinde, X-ışınları aynı görünür ışık gibi bir elektromanyetik dalga olup, görünür ışıktan farkı düşük dalga boyu, dolayısıyla yüksek frekansları ve enerjileridir. Morötesi'nin ötesidir. X Işınlarının ötesi ise Gama ışınları'dır.

Magnetar, ışıma enerjisini sahip olduğu muazzam manyetik alanından sağlayan bir çeşit nötron yıldızıdır. Bu tip atarcalar çok yüksek enerjili x-ışını ve gama ışını yayınımı yapmaktadırlar. Magnetarlar “tekrarlayan yumuşak gama ışın kaynakları”-SGR-(soft gamma repeaters) ve “Anormal x-ışını atarcaları”-AXP- olmak üzere iki grupta sınıflandırılmaktadır.
Yoğun madde fiziği, maddenin yoğun hallerinin fiziksel özellikleriyle ilgilenen bir fizik dalıdır. Yoğun madde fizikçileri bu hallerin davranışını fizik kurallarını kullanarak anlamaya çalışır. Bunlar özellikle kuantum mekaniği kuralları, elektromanyetizma ve istatistiksel mekaniği içerir. En bilinen yoğun fazlar katı ve sıvılardır, harici yoğun fazlar ise düşük sıcaklıktaki bazı materyaller tarafından gösterilen üstünileten faz, atom kafeslerindeki dönüşlerin ferromanyetik ve antiferromanyetik fazları ve soğuk atom sistemlerinde bulunan Bose-Einstein yoğunlaşması. Araştırma için uygun sistemlerin ve fenomenlerin çeşitliliği yoğun madde fiziğini modern fiziğinin en aktif alanı yapıyor. Her 3 Amerikan fizikçiden biri kendini yoğun madde fizikçisi olarak tanımlıyor ve Yoğun Madde Fiziği Bölümü Amerikan Fizik Topluluğu’ndaki en geniş bölümdür. Bu alan kimya, malzeme bilimi ve nano teknoloji ile örtüşür ve atom fiziği ve biyofizikle de yakından ilgilidir. Teorik yoğun madde fiziği teorik parçacık ve nükleer fizikle önemli kavramlar paylaşır.
Absorpsiyon spektroskopisi, radyasyonun dalga boyu ya da frekansın bir fonksiyonu olarak irdelenmesidir. Absorpsiyon teorisine göre örnek madde ortamdan enerji absorbe eder. Emilen enerjinin şiddeti, frekansın ve dalga boyunun bir fonksiyonu olarak ifade edilmiştir.

X-ışını ikilileri, X-ışınlarında aydınlık olan ikili yıldızların bir sınıfıdır. X-ışınları bir maddenin verici denilen (genellikle normal bir yıldızın) bir bileşeninden bir beyaz cücenin, nötron yıldızının ya da kara deliğin sıkıştırılmasından oluşan kütle alıcı denilen diğer bileşenine düşmesiyle üretilir. Birbirlerini çeken madde X-ışınları gibi, geriye kalan kütlesinin birkaç ondalığı kadar, yerçekimi potansiyel enerjisini serbest bırakır. (Hidrojen füzyon, geriye kalan kütlenin sadece yüzde 0.7sini serbest bırakır.) Tipik sabit düşük kütleli bir X-ışını ikilisinden saniyede tahmini 1041 pozitron kaçmaktadır.
Bu Lazer konularının bir listesidir.

Enine dalga, enerji transferi doğrultusuna dik olarak, titreşim hareketi yaparak ilerleyen bir dalga türüdür. Eğer enine dalga pozitif x-yönünde hareket ediyorsa dalganın titreşimleri aşağı ve yukarı şekilde y-z düzleminde hareket ediyordur. Işık, enine dalgalara bir örnektir. Maddedeki enine dalgalar ise, ortamda dalganın aldığı mesafe, dalganın yayılma doğrultusuna diktir. Havuzda oluşabilecek hafif dalgalanma ve ipteki dalgalanma enine dalgaların zihnin kolayca canlandırabildiği örneklerdendir.
Optik, Mısır ve Mezopotamyalılar tarafından geliştirilen lenslerle başlamış ve Yunan ve Hint filozofları tarafından geliştirilen ışık ve vizyon teorileri takip etmiştir.
Geometrik optik veya ışın optiği, ışık yayılmasını ışınlarla açıklar. Geometrik optikte ışın bir soyutlama ya da enstrumandır; ışığın belirli şartlarda yayıldığı yola yaklaşmada kullanışlıdır.

Bir x ışını mikroskobu yumuşak X ışını şeritlerinde elektromanyetik radyasyonu kullanarak objelerin büyütülmüş görüntülerini üretir. X ışınları birçok objenin içinden geçebildiğinden onları gözlemlemek için özellikle hazırlamak gerekmez.

Lazer ışını kaynağı (LIK), bir lazer kullanılarak metal veya termoplastik parçaları birleştirmek için kullanılan bir kaynak tekniğidir. Kiriş, dar, derin kaynaklara ve yüksek kaynak oranlarına izin veren konsantre bir ısı kaynağı sağlamaktadır. Süreç, otomotiv endüstrisinde olduğu gibi otomasyon kullanan yüksek hacimli uygulamalarda sıklıkla kullanılmaktadır. Anahtar deliği veya penetrasyon modu kaynağına dayanmaktadır.
Astigmatizm (veya Astigmatizma) ile bir optik sistemde, iki dik düzlemde yayılan ışınların farklı odaklara sahip olduğu bir sistem sorunudur. Bir çarpı görüntüsünü oluşturmak için astigmatizma ile optik bir sistem kullanılırsa, dikey ve yatay çizgiler iki farklı mesafede keskin odakta olacaktır. Terim, "yok" anlamına gelen Yunanca α- (a- ) ve στίγμα ( stigma), ("bir işaret, nokta, delinme" anlamına gelen") birleşiminden oluşmuştur.
Fotokırılma etkisi, belirli kristallerde ve ışığa kırılma indekslerini değiştirerek tepki veren diğer malzemelerde görülen doğrusal olmayan bir optik etkidir. Bu etki, geçici, silinebilir hologramları saklamak için kullanılabilir ve holografik veri depolaması için kullanışlıdır. Aynı zamanda bir faz eşlenik ayna veya optik uzaysal soliton oluşturmak için de kullanılabilir.