İçeriğe atla

Gauss yasası

Fizikte Gauss'un akı teoremi olarak da bilinen Gauss yasası, elektrik yükünün ortaya çıkan elektrik alanına dağılımına ilişkilendiren matematiksel bir yasadır. Söz konusu yüzey küresel yüzey gibi bir hacmi çevreleyen kapalı bir yüzey olabilir.

Yasa ilk olarak J. Louis Lagrange tarafından 1773 yılında düşünüldü. Ardından C. Friedrich Gauss tarafından 1813'te her ikisi de elipsoidlerin çekiciliği bağlamında formüle edildi. Gauss yasası klasik elektrodinamiğin temelini oluşturan Maxwell'in 4 denkleminden birisidir. Gauss yasası Coulomb yasasını türetmek için kullanılabilir ve bunun tersi de geçerlidir.

Başlıca fizik ve matematiksel çözümleme alanlarında kullanılır.

Nitel Açıklama

Kelimelerle Gauss yasası, herhangi bir kapalı yüzeyden geçen net elektrik akısı, yüzeyin sarmaladığı net yükün 'a bölümüdür. Gauss kanununun uygulanabilmesi için yük etrafında uygun kapalı yüzeyler seçilmelidir.

Gauss yasası Gauss'un manyetizma yasası ve Gauss'un yerçekimi yasası gibi fiziğin diğer alanlarındaki bir dizi yasayla yakın bir matematiksel benzerliğe sahiptir. Aslında herhangi bir ters kare yasası Gauss yasasına benzer bir şekilde formüle edilebilir. Örneğin Gauss yasasının kendisi ters kare yasası olan Coulomb yasasıyla eşdeğerdir. Aynı şekilde Newton'un kütleçekim yasası bir ters kare yasasıdır ve Gauss'un yerçekimi yasası ile eşdeğer bir niteliğe sahiptir.

Yasa tümlev formda ve diferansiyel formda Vektör Analizi yardımı ile matematiksel olarak ifade edilebilir. Gauss yasası, bir başka adı Gauss teoremi olarak da adlandırılan diverjans teoremi üzerine oturtturulmuştur. Bu formların (tümlev ve diferansiyel) her biri sırayla iki şekilde ifade edilebilir:

elektrik alanı ile toplam elektrik yükü arasındaki ilişki açısından veya elektrik yer değiştirme alanı ve serbest elektrik yükü açısından ifade edilebilir.

Elektrik Alanını İçeren Denklem

Gauss yüzeyinin bir bölümü içindeki yükü gösteren bir çizim.

Gauss yasası, elektrik alanı ve elektrik yer değiştirme alanı kullanılarak ifade edilebilir. Bu bölüm elektrik alanıyla bazı formları gösterir, elektrik yer değiştirme alanı ile gösterilen formlar aşağıdadır.

Tümlev Form

Gauss yasası kısaca şöyle ifade edilebilir:

Burada herhangi bir hacmini çevreleyen kapalı bir yüzeyinden geçen toplam elektrik akısıdır., hacmindeki toplam yüktür ve elektrik sabitidir. Elektrik akısı elektrik alanının yüzey integrali olarak tanımlanır:

Burada elektrik alanını, yüzey alanının sonsuz küçük elemanını temsil eden bir vektörü ve iki vektörün iç çarpımını temsil eder.

Akı, elektrik alanının tümlevi olarak tanımlandığından, Gauss yasasının bu ifadesine tümlev ya da integral form denir.

Eğer elektrik alanı her yerde biliniyorsa, Gauss yasası elektrik yükünün dağılımını bulmayı mümkün kılar. Herhangi bir bölgedeki yük, akıyı bulmak için elektrik alanı entegre edilerek çıkarılabilir. Tersi durumda (elektrik yükü dağılımı bilindiğinde ve elektrik alanı hesaplanması gerektiğinde) işler zorlaşacaktır. Belirli bir yüzeyden geçen toplam akı, elektrik alanı hakkında çok az bilgi verir ve rastgele karmaşık desenlerde yüzeye girip çıkabilir.

Bir istisna, problemde elektrik alanın yüzeyden düzgün bir şekilde geçmesini zorunlu kılan bir simetri bulunmasıdır. Daha sonra toplam akı biliniyorsa alanın kendisi her noktada çıkarılabilir. Gauss yasasına uygun olan yaygın simetri örnekleri, silindirik simetri, küresel simetri ve düzlemsel simetri verilebilir. Detaylı bilgi için Gauss yüzeylerine bakabilirsiniz..

Diferansiyel Form

Diverjans teoremi ile yasa diferansiyel formda da yazılabilir:

burada elektrik alanının diverjansı, elektrik sabiti ve birim hacimde ki yük miktarı ya da yük yoğunluğudur.

Diferansiyel ve İntegral formların eşitliği

Ana madde :Diverjans teoremi

Matematiksel olarak integral ve diferansiyel form diverjans teoremi vasıtasıyla birbirine eşitlenebilir.

İspat:

Gauss yasasının integral formu:

yükünü içeren herhangi bir kapalı yüzeyi için)

Diverjans teoremi ile bu denklem şu şekilde yazılabilir:

( yükünü içeren herhangi bir hacmi için)

Yük ve yük yoğunluğu arasındaki ilişkiye göre bu denklem eşdeğerdir:

Bu denklemin her olası hacmi için aynı anda doğru olabilmesi için integrallerin her yerde eşit olması gerekir. Bu nedenle denklem şuna eşdeğerdir;

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

Elektriksel potansiyel enerji, bir "" Elektriksel yük'ünün Elektriksel alan içerisindeki konumuna bağlı olarak depoladığı bir potansiyel enerji çeşididir.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

<span class="mw-page-title-main">Coulomb kanunu</span> fizik kanunu

Coulomb yasası ya da Coulomb'un ters kare yasası, bir fizik yasasıdır. Elektrik yüklü tanecikler arasındaki elektrostatiği tanımlar. Bu yasa 1785'te Fransız fizikçi Charles Augustin de Coulomb tarafından yayınlanmıştır ve klasik elektromanyetizmadaki önemli bir gelişmedir. Coulomb yasası Gauss yasasından ve vice versa(bahsi geçen hadisenin tam tersinin de geçerli olduğunu anlatmak için kullanılır)dan türetilmiştir. Yasa elektromanyetizmin prensibi durumuna gelmiştir.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Ampère kanunu</span>

Klasik elektromanyetizmada Ampère yasası kapalı bir eğri üzerinden integrali alınmış manyetik alanla o eğri üzerindeki elektrik akımı arasındaki ilişkiyi açıklayan yasadır. James Clerk Maxwell yasayı hidrodinamik olarak 1861 tarihli Fizikte kuvvet çizgileri üzerine makalesinde tekrar kanıtlar. Yasanın matematiksel ifadesi şu anda klasik elektromanyetizmayı oluşturan dört temel Maxwell denkleminden biridir.

Akım yoğunluğu elektrik devresinde yoğunluğun bir ölçüsüdür. Vektör olarak tanımlanır ve elektrik akımının kesit alana oranıdır. SI'de akım yoğunluğu amper/metrekare veya coulomb/saniye/metrekare cinsinden ifade edilebilir.

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

Φ harfiyle gösterilen Manyetik akı, toplam manyetizmanın ölçüsüdür ve bu yönüyle elektrik yükün manyetik karşılığıdır. Manyetik akı yoğunluğu ise B harfiyle gösterilir ve birim kesit alandan geçen manyetik akı miktarının ölçüsüdür.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

Matematikte, Poisson denklemi elektrostatik, makine mühendisliği ve teorik fizik'de geniş kullanım alanına sahip eliptik türdeki Kısmi diferansiyel denklemlerdir. Fransız matematikçi, geometrici ve fizikçi olan Siméon Denis Poisson'dan sonra isimlendirilmiştir. Poisson denklemi

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

<span class="mw-page-title-main">Manyetizma için Gauss yasası</span>

Manyetizma için Gauss yasası, Maxwell'in klasik elektromanyetizmayı açıklayan dört denkleminden biridir. Bu yasa kapalı bir yüzeyden geçen net manyetik akının sıfır olduğunu gösterir. Bunun sebebi manyetik alan çizgilerinin belli bir başlangıç ve bitiş noktasına sahip olmayıp kapalı ilmekler oluşturmasıdır. Bu yargı, yalıtılmış manyetik kutupların bu güne kadar deneysel olarak algılanamadığı gerçeğine dayanmaktadır. Manyetizmada elektriğin tersine yükler yerine çiftkutuplar vardır. Eğer bir gün manyetik tekkutup elde edilebilirse (yalıtılırsa) bu yasanın gözden geçirilmesi gerekecektir.

<span class="mw-page-title-main">Elektrik akısı</span> elektrik alanının akısı

Elektrik akısı, elektrik alanının akısıdır. Elektrik akısı, bir yüzeyden geçen elektrik alan çizgilerinin sayısıyla doğru orantılıdır. Çok küçük bir dA alanındaki elektrik akısı şu şekilde hesaplanır:

<span class="mw-page-title-main">Gauss yüzeyi</span>

Gauss yüzeyi, üç boyutlu uzayda içinden bir vektör alanın akısı geçen kapalı bir yüzeydir; genellikle elektrik alanı, yerçekim alanı ve manyetik alanı bulmak için kullanılır. rastgele seçilmiş bu kapalı yüzey S = ∂V Gauss yasasıyla ilişkili alan için conjuction olarak bir yüzey integrali sergilenerek kullanılır. Elektrostatik alanın kaynağı olarak elektrik yükünün miktarı ya da yerçekimi alanını kaynağı olarak yerçekimi ağırlığını kapalı alanda hesaplamak için kullanılır. Maddesel olması için, elektrik alan bu metinde, alanın en sık bilinen yüzey şekli olarak tanımlandırıldı. Gauss yüzeyleri genellikle, yüzey integralinin simetrisini basitçe hesaplayabilmek için dikkatle seçildi. Bir Gauss yüzeyi, yüzey üzerindeki her noktanın elektrik alan bileşenleri için, sabit bir normal vektörüne doğru seçilmiş ise, hesaplama zor bir integral gerektirmeyecektir.

Fizikte -ayrıca yer çekimi için Gauss akı teoremi olarak bilinen- Gauss yer çekimi yasası, Newton'un evrensel çekim yasasına temelde eşdeğer olan fizik yasasıdır. Her ne kadar Yer çekimi için Gauss yasası Newton'un yasasına denk olsa da, pek çok durumda Gauss yer çekimi yasası hesaplama yapmak için Newton'un yasasından çok daha basit ve uygundur.

<span class="mw-page-title-main">Magnetostatik</span>

Magnetostatik, Akımın sabit olduğu sistemlerdeki Manyetik alanlar üzerine çalışan bir alandır. Yüklerin sabit olduğu Elektrostatikin bir manyetik analoğudur. Mıknatıslanma, statik olmak zorunda değildir. Magnetostatik eşitlikleri, nanosaniyede ya da daha kısa sürede manyetik cereyanları tahmin etmek için kullanılabilir. Magnetostatik, akımlar sabit olmadığında bile yeterince iyi bir yaklaşımdır. Akımların sürekli değişmemesi gerekir. Magnetostatik, mikro manyetiğin çok kullanılan bir uygulamasıdır. Manyetik kayıt cihazları gibi.