İçeriğe atla

Gauss-Legendre Algoritması

Gauss-Legendre Algoritması π sayısının basamaklarını hesaplamak için kullanılan bir algoritmadır. Sadece 25 iterasyonda π sayısının 45 milyon basamağını doğru olarak hesaplıyor.

Bu yöntem Carl Friedrich Gauss (1777-1855) ve Adrien-Marie Legendre (1752-1833) ikilisinin bireysel çalışmalarıyla modern çarpma ve karekök bulma algoritmalarının bir birleşimine dayanmaktadır.

Aşağıda gösterilen çeşidiyse Brent-Salamin(ya da Salamin-Brent) algoritması olarak da bilinir; 1975 yılında Richard Brent ve Eugene Salamin tarafından keşfedilmiştir. Bu algoritma 18-20 Eylül 1999'da π sayısının ilk 206,158,430,000 ondalık basamaklarını hesaplamakta kullanıldı ve sonuçlar Borwein Algoritması'yla kontrol edildi.

Algoritma

1. Başlangıç değeri ayarlama:

2. Aşağıdaki talimatları ve 'nin farkı istenen doğruluk seviyesine gelene kadar uygulamaya devam edin.

3.π yaklaşık olarak şu çıkar:

İlk 3 iterasyonun sonucu:

Matematiksel arka plan

Aritmetik-geometrik ortalamanın sınırları

İki sayının aritmetik-geometrik ortalaması, a0 ve b0, aşağıdaki dizilerin limitleri alınarak bulunur

Bu iki denklem de aynı limit değerine yakınsar. Eğer ve ise limit değerine yakınsar; öyle ki birinci tür tam olmayan eliptik integraldir.

Eğer , ise

öyle ki ikinci tür tam olmayan integraldir.

Gauss tüm bu sonuçları biliyordu.[1][2][3]

Legendre’ın özdeşliği

Öyle bir ve sayıları vardır ki eşitliğini sağlar. Legendre bu ödeşliği kanıtlamıştır:

Kaynakça

  1. ^ Brent, Richard (1975), Traub, J F (Ed.), "Multiple-precision zero-finding methods and the complexity of elementary function evaluation", Analytic Computational Complexity, New York: Academic Press, ss. 151-176, 23 Temmuz 2008 tarihinde kaynağından arşivlendi, erişim tarihi: 8 Eylül 2007 
  2. ^ Salamin, Eugene. Computation of pi, Charles Stark Draper Laboratory ISS memo 74–19, 30 January, 1974, Cambridge, Massachusetts
  3. ^ Salamin, Eugene (1976), "Computation of pi Using Arithmetic-Geometric Mean", Mathematics of Computation, 30 (135), ss. 565-570, ISSN 0025-5718 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Bu bir Küresel harmonikler ortonormalize tablosudur ve Bu Condon-Shortley fazı l = 10 dereceye kadar sağlanır.Bazen bu formüllerin "Kartezyen" yorumu verilir.Bu varsayım x, y, z ve r Kartezyen-e-küresel koordinat dönüşümü yoluyla ve ye ilişkindir:

Matematikte, uzunluğu 1 olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

Matematikte, trigonometrik fonksiyonların değerleri gibi yaklaşık olarak veya gibi tam olarak ifade edilebilir. Trigonometrik tablolar birçok yaklaşık değer içerirken, belirli açılar için kesin değerler aritmetik işlemler ve karekök kombinasyonu ile ifade edilebilir. Bu şekilde ifade edilebilen trigonometrik değerlere sahip açılar tam olarak pergel ve düzeç ile inşa edilebilen açılardır ve bu değerlere inşa edilebilir sayılar denir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

<span class="mw-page-title-main">Trigonometrik yerine koyma</span> trigonometrik fonksiyonları içeren integrallerin hesaplanması için yöntem

Matematikte, bir trigonometrik yerine koyma veya trigonometrik ikame, trigonometrik fonksiyon yerine başka bir ifadeyi koyar. Kalkülüste trigonometrik ikameler integralleri hesaplamak için kullanılan bir tekniktir. Bu durumda, radikal fonksiyon içeren bir ifade trigonometrik bir ifade ile değiştirilir. Trigonometrik özdeşlikler cevabı basitleştirmeye yardımcı olabilir. Diğer yerine koyma yoluyla integrasyon yöntemlerinde olduğu gibi, belirli bir integrali değerlendirirken, integrasyon sınırlarını uygulamadan önce, ters türevin sonucunu tam olarak çıkarmak daha basit olabilir.

Matematikte, Ivan Niven'in adını taşıyan Niven teoremi, 0° ≤ θ ≤ 90° aralığında θ derecesinin sinüsünün de rasyonel bir sayı olduğu tek rasyonel θ değerlerinin şunlar olduğunu belirtir: