İçeriğe atla

GPR

Yeraltı radarı (GPR) ile alınmış bir profil örneği

Yeraltı Radarı ya da genel adıyla GPR (Ground Penetrating Radar), yeraltının sığ tabakalarının (ilk 0-40 metre) araştırılmasında kullanılan jeofizik bilimi tabanlı bir ölçüm cihazıdır.

Son otuz yıl içerisinde elektronik endüstrisinde yaşanılan olağanüstü gelişmeler, bir zamanlar zahmetli ve pahalı bir iş olan ışık hızı ölçümlerini son derece ucuz, kolay ve duyarlı bir şekle dönüştürmüştür. 1970'lı yıllarda milisaniye (10−3 s) duyarlıkla yapılan zaman ölçümleri, 1980'li yıllarda mikro saniye (10−6 s), 1990'lı yıllarda ise nano saniyeye (10−9 s) duyarlığa kadar inmiştir. Elektronikteki bu gelişmelere paralel olarak, yeraltında ışık hızına yakın bir süratle hareket eden elektromanyetik dalgaların yolculuk sürelerinin nano saniye mertebesinde ölçülebilmesi, sığ jeofizik görüntüleme yöntemlerine önemli katkılarda bulunmuştur. Yer radarı yukarıda söz edilen bu gelişmelerin somut bir sonucudur.

Yöntem, yatay doğrultuda elektrik alan vektörü olan (TE: Transvers Elektrik) bir verici anten aracılığı ile yer içine gönderilen çok yüksek frekanslı EM dalgalarının (radyo dalgaları) ara yüzeylerden yansımasının (echoes) gözlemlenmesi ilkesine dayanmaktadır. Yeraltında, her iki tarafı farklı dielektrik özellikte kayaçlardan oluşan bir ara yüzey varsa, elektromanyetik dalga bu ara yüzeyde yansıma ve iletime uğrayacaktır. Dalga şekli olarak sürekli veya Chirp adı da verilen birkaç nano saniye süreli elektromanyetik imler kullanılır. Kaynak dalgası için seçilen bir merkezi frekansın %50 altı ve üstü aralığındaki frekanslar kullanılır. Örnek olarak 100 Mhz merkez frekanslı kaynakta 50 MHz den 150 Mhz e kadar bir aralık kullanılır. Yer radarı (Ground Penetrating Radar, GPR) ilk önce buz kalınlığının ölçülebilmesi için geliştirilmiştir. Normal yer ortamında yapılan çalışmalarda elde edilen verilerin sismik yöntemlerde kullanılan veri işlem teknikleri ile işlenmesi sonucunda 10 – 20 m gibi araştırma derinliğine ulaşıldığı görülmüştür. Günümüzde ise GPR yöntemi sığ yer araştırmaları ile arkeometri çalışmalarında yaygın olarak kullanılmaktadır. Kullanım yerlerine örnekler aşağıdaki gibi verilebilir :

  • Yer araştırmaları: Yol, havaalanı, baraj, su kanalı, santral, yerleşim alanı yer araştırmaları,
  • Tünel Araştırmaları: Demiryolu, karayolu, su tünelleri, tüp geçitler, maden galerisi araştırmaları,
  • Yapı Araştırmaları: Tavan, taban ve duvarların incelenmesi, restorasyon amaçlı araştırmalar,
  • Arkeojeofizik Araştırmaları: Antik şehir, tapınak, mezar, duvar, temel, dehliz ve benzeri tarihi kalıntıların bulunması,
  • Endüstriyel atık, sızıntı ve çevre kirlenmesinin araştırılması: Eski veya kaydı bulunmayan endüstriyel atık alanlarının bulunması, fabrika, akaryakıt istasyonu, su yolu vb. kaçak ve sızıntılarının belirlenmesi, çöp boşaltım alanlarının yer araştırmaları,
  • Eski veya kaydı bulunmayan şehir altyapılarının araştırılması: Eski kanalizasyon, su yolu, kanal, boru, sığınak, elektrik ve telefon hatlarının bulunması,
  • Adli ve Adli Tıp: Cezaevi firar tünellerinin tespiti, ceset ve toplu mezarların yerlerinin bulunması,
  • Yeryüzü ve galerilerde maden Araştırmaları: Yüzeye yakın (40 metreye kadar) madenlerin aranması ve rezerv geliştirme, galeri sürülerek yapılan maden (kömür) araştırmaları, göçük ve maden kazalarında ilk yardım amaçlı çalışmalar.

GPR Kuramı

Bağıl permittivite K, sığalara ait dielektrik sabiti ile eşanlamlıdır. Bir sığaya ait dielektrik sabitinin büyümesi, o sığanın kutuplanma yolu ile daha çok elektromanyetik enerji biriktirebilmesi anlamına gelir. Bir maddenin yapısını oluşturan nötr durumdaki moleküller, üzerlerinden geçen elektromanyetik dalganın etkisi altında kutuplanırlar ve içerilerine elektromanyetik enerji depolarlar. Bunun hemen ardından söz konusu enerjiyi tekrar elektromanyetik dalga olarak geri verirler. Elektromanyetik dalga madde içerisinde bir molekülden diğerine bu şekilde ilerler. Olay bu açıdan sismik dalgaların madde içindeki ilerlemesine çok benzemektedir. Fakat elektromanyetik dalgalar madde olmaksızın uzay boşluğunda da ilerleyebilirler. Sismik dalgaların ilerleyebilmesi için ortamın maddeden oluşması şarttır (Sismik yansıma katsayısının tanımındaki yoğunluk parametresinin nedeni). Yere gönderilen elektromanyetik sinyal harmonik bir yapıda olup etken bir frekans içermektedir. Bu frekansın değeri nüfuz derinliğini, soğrulma miktarını ve saçılma derecesini belirler. Söz konusu frekans 10 MHz den küçük olduğunda, nüfuz derinliği artarken iki olumsuz durumla karşılaşılır:

  1. düşen frekansla birlikte düşey çözünürlüğün azalması,
  1. düşük frekanslarda madde içerisindeki kutuplanabilir unsurların kutuplgtanmak yerine asıl konumlarını terk ederek elektrik iletkenliğe (akım) neden olmaları.

Düşük frekanslarda elektromanyetik enerjinin elektrik iletkenliğe dönüşmesi soğurulmanın başlıca nedenidir. 300 MHz den yüksek frekanslarda ise madde içerisindeki kutuplanabilir unsurlar asıl yerlerini terk etmete fırsat bulamayacaklarından elektrik iletkenliğin neden olduğu soğurulmadan etkilenmeyeceklerdir. Bununla beraber yüksek frekanslarda bir etki-tepki gecikmesi sorunu yaşanacak, bunun sonucu artan frekansla birlikte bağıl permittivitede frekans bağımlı bir azalma söz konusu olacaktır. Öte yandan frekans arttıkça düşey çözünürlükte bir iyileşme olurken, bu kez nüfuz derinliği azalmaktadır. Yüksek frekanslar yer radarı kesitlerinde fazla sayıda saçılma hiperbolünün de ortaya çıkmasına neden olmaktadır.

Yukarıda yapılan tartışmalardan anlaşılacağı üzere, yeraltı ne kadar dirençli (az iletken) ise, yer radarı görüntüleri o kadar kaliteli olmaktadır. Nüfuz derinliğinin önemli olduğu durumlarda, ortamın mümkün olduğunca kuru (rutubetsiz) olması gerekmektedir. Elektromanyetik dalgalar yeraltı su seviyesine ulaştıklarında göreceli olarak daha iletken bir ortama girmektedirler. Bu söz konusu ıslak seviyede, hem önemli bir bağıl permittivite farklılaşması (kontrastı) oluşmakta, hem de elektrik iletkenliğin bu seviyedeki ani artışı nedeniyle, yansıyarak yeryüzüne gelen elektromanyetik imin genliğinde ve yüksek frekans içeriğinde soğrulmaya bağlı olarak önemli azalmalar görülmektedir. Bunun sonucu olarak yer radarı kesitlerinde, yeraltı su seviyesinden itibaren derinlere doğru inildikçe, soğrulmaya bağlı olarak genlik ve yüksek frekanslar azalmakta, kesitte yeraltı su seviyesinin altındaki bölümlerde enerji ‘süpürülmüş’ bir görünüm sunmaktadır.

Arazide Ölçüm ve Veri Sunumu

Basit olarak GPR dizgesi :

  • Bilgisayar,
  • Kayıt aygıtı CU (Control unit),
  • Alıcı ve verici, Antenlerden oluşur.

CU yardımıyla kullanılan frekans, ölçümün yapılacağı zaman pencereleri (windows) yığma yapılacak iz sayısı vb. koşullar ayarlanır. Ölçümlerde kullanılan frekans değerleri 25 ile 3000 MHz arasındadır.

Kayıt pencereleri 32-2448 ns arasında olabilir ve 2049 ize kadar yığma yapılabilir. CRU olarak uygun bir PC ya da diz üstü bilgisayar kullanılmaktadır. Böylece birçok veri-işlem aşaması arazi koşullarında da yapılabilmektedir. Antenler ayrı ayrı olabildiği gibi tek bir parça içinde de yer alabilirler.

Anten aralıklarının sabit tutulma koşuluna rağmen antenler arası mesafe kullanılan frekans, çevre koşulları ve anten boyutlarına bağlı olarak seçilmelidir. Tek parça anten sistemleri ise sürekli kayıt (continious profiling ) olanağı sağladığından bazı koşullarda daha yararlı olabilir. Fiziksel olarak antenler kullanıldıkları frekansa bağlı olarak değişik ölçülerde yapılırlar.

Antenlerde yayınım silindirik bakışımlı ve anten ekseninde sıfır şiddetindedir. Bu basit şekil arazi koşullarında değişebilmektedir. Ortamdaki özdirenç ve dielektrik sabitine bağlı olarak enerjinin tepe değerleri yüzeye belli bir açı ile oluşabilmektedir.

GPR çalışmalarında frekans anten aralığı, durak aralığı, kayıt uzunluğu ve örnekleme aralığı araştırma amacına göre belirlenmesi gereken değiştirgelerdir.

En önemli değişkendir ve birçok değişkeninde belirlenmesinde rol oynar. Eğer d derinlik çözünürlüğü alınırsa uygun frekans

f = 150 / d √ε MHz

ile bulunur. Burada derinlik çözünürlüğü hedeflenen derinliğin %25 i olarak alınır. Çözünürlük ölçütü ve nüfus derinliği koşulları genelde karmaşa yaratır. Uygulamada buna dikkat edilmelidir. Çözünürlük durak aralığından da etkilenir. Eğer sabit aralıklı hatlarda iki durak arası uzaklık, dalga boyunun ¼ ünden daha büyük ise kuramsal olarak tanımlanabilecek hedefler belirlenemez. Bu koşul yaklaşık olarak

Dx= 75/ f √ε (m)

ile verilebilir. Diğer bir yaklaşımla her iki işlemden Dx in en fazla araştırma derinliğinin 1/8 i kadar veya daha az olması gerektiği görülebilir. Anten dizilimleri genelde yan yana olarak yapılmasına rağmen uygulamada uç uca dizgelerde kullanılır. Jeolojik uzanım bilindiği durumlarda antenler yapıya paralel olarak tutulmalıdır. Uygulamalarda anten aralığı araştırma derinliğinin 1/5 veya daha azı alındığında iyi sonuç verdiği görülmüştür. Derinliğe bağlı olarak ampirik bağıntı ise

Danten = (2 derinlik)/ √(ε-1) (m)

İle verilir. Örnekleme frekansının seçiminde örnekleme kuramı göz önünde tutulmalıdır. GPR da kullanılan en yüksek frekans merkezi frekansın 1.5 katı olduğuna göre örnekleme aralığı merkezi frekansın en az 3 katı olmalıdır. Sağlıklı ölçüm için 2 katsayısının da kullanımı önerilir. Bu durumda 100 MHz merkezi frekansta örnekleme aralığı

∆f = 100x 3x 2 =600 MHz

ve

∆t = 1.67 nsn

bulunur.

Veri İşlem Teknikleri ve Veri Sunumu

GPR verisi sayısal olarak kayıt edilir ve çok fazla veri- işlem gerektirir. Yüksek tekrarlanma oranı yardımı ile istenilen sayıda im elde edilip yığma yapılabilir. Yığma sayısına arazi koşullarında karar verilir. Yığma işleminden sonra alçak geçişli süzgeçler yardımı ile uyartım (inductive) etkiler, yüksek geçişli süzgeçler ile de gürültüler veriden ayıklanır. İm genliğinde zamana bağlı gelişen sönümlenme zaman – değişkenli (time –variant) veri-işlem yapılarak giderilir. Birçok veri-işlem aşaması arazi koşullarında yapılabildiği halde veriler genelde ham olarak saklanır. Veri işleme arazi çalışmalarının sonrasında yapılır.

Günümüzde sismik yorumda kullanılan birçok veri işlem yöntemi hemen hemen hiç değişmeden GPR sonuçlarının yorumunda da kullanılmaktadır. GPR izi eş aralıklı sayısal değerler olarak kayıt edilir. GPR kesitleri, her bir izin yan yana çizilmesi ile elde edilir. Bu durumda yatay eksen uzaklık, düşey eksen ise gidiş geliş zamanıdır. Düşeyde kullanılan birim nano saniyedir. Bu da kesitin sismikte kullanılan ses dalgasından değil de radar tarafından üretildiğini gösterir.

Elde edilen radar verileri sismik yönteme benzer olarak kesitler olarak sunulur. Eğer birbirine paralel ölçüm hatları varsa zaman seviye haritaları yapılabilir. Belli bir zaman değeri için bütün ölçümlerden genlik değerleri çıkartılır ve harita üzerindeki ölçüm noktalarına işlenir.

Dezavantajlar

GPR, yüksek iletkenliğe sahip (.15 miliohms/m) ıslak killer ve siltler için uygun değildir.[1] GPR çözünürlüğü derinlikle azalır.

Kaynakça

  1. ^ Budhu, M. (2011) Soil Mechanics and Foundation. 3rd Edition, John Wiley & Sons, Inc., Hoboken. see chapter 3.5.1 Soils Exploration Methods

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden ölçüt. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

Jeofizik, yerfiziği olarak da bilinir, fiziğin temel ilkelerinden yararlanılarak, hidrosferi ve atmosferi de içerecek biçimde Dünya'nın araştırılmasını konu edinen yer bilimleri dalı. Jeofizik tarihi insanoğlunun bilimsel merakını giderme ile ilişkili "kuramsal" problemlerle ve yerin doğal kaynaklarından yarar sağlama ile yer kaynaklı afetlerle ilişkili "pratik" problemlerle ilişkili olarak gelişmiştir.

Denizaltılar, hem su altında aletli seyir gerçekleştirdiğinden, hem de gizliliği önemli olduğundan seyrüsefer sistemleri gelişmiş araçlar olmak zorundadırlar. Denizaltının seyrüseferini ve dost/düşman diğer araçları görmesini ve tanımasını sağlayan araçlara denizaltı alıcıları denir.

<span class="mw-page-title-main">Anten (elektronik)</span> elektrik gücünü radyo dalgaları ile çeviren elektronik aygıt

Elektronikte antenler, boşluktaki elektromanyetik dalgaları toplayarak bu dalgaların iletim hatları içerisinde yayılmasını sağlayan veya iletim hatlarından gelen sinyalleri boşluğa dalga olarak yayan cihazlardır. Antenlerde enerjinin iletimi ve alınması anteni oluşturan metal iletkenlerin uygulanan elektrik akımı ile yüklenmesi ile gerçekleşir. Alıcı antene eşlenen güç sinyalin arttırılması için bir amplifikatöre iletilebilir. Antenler radyo, telsiz ve benzeri kablosuz iletişim cihazlarının temel elemanlarındandır.

<span class="mw-page-title-main">Modülasyon</span>

Modülasyon ya da kipleme, bir taşıyıcı sinyal ile bilgi sinyalini birleştirmekten ibaret olan ve iletişim teknolojisinde (yayıncılıkta) kullanılan bir yöntemdir. Yöntem, başlarda anten yoluyla yapılan yayınlar için öngörülmüş ise de, günümüzde kablolu, kablosuz her tür iletişimde kullanılmaktadır. Çok alçak frekanslı sinyallerin çok uzak mesafelere gönderilmesi güçtür. Bu nedenle alçak frekanslı sinyalin, yüksek frekanslı taşıyıcı bir sinyal üzerine bindirilerek uzak mesafelere taşınması sağlanabilir. Bu noktada kiplemeye başvurulur.

MBRAI Hareketli ve Taşınabilir DVB-T/H Aygıtları İçin Radyo Erişim Arayüzü Tanımlamaları, yeni gelişmekte olan DVB-T ve DVB-H standardları için endüstrinin ve tüketici pazarının ihtiyaç duyduğu Radyo Frekans başarım ölçütlerini tanımlar. Tanımlama çalışmaları Kasım 2002 yılından beri EICTA tarafından yürütülmektedir.

<span class="mw-page-title-main">Radyo dalgaları</span> Radyo Dalgaları (Radio Waves)

Radyo dalgaları, radyo frekansı ile gerçekleşen elektromanyetik dalgalardır. Tel gibi somut bağlantılar kullanmadan, atmosfer içerisinde veri taşınmasına olanak tanırlar. Radyo dalgalarını diğer elektromanyetik dalgalardan ayıran özellikleri görece uzun dalgaboylarıdır.

<span class="mw-page-title-main">Köşe yansıtıcılar</span>

Köşe yansıtıcılar, özellikle, çok küçük etken yansıtma yüzeyine sahip nesnelerden kuvvetli bir radar yansıması elde etmek için kullanılır. Bir köşe yansıtıcı birbirlerine 90°'lik açı ile yerleştirilmiş, elektriksel iletkenliğe sahip iki veya üç adet yüzeyden meydana gelir. Gelen elektromanyetik dalgalar art arda birkaç yansımaya uğrayarak geldikleri yöne yansıtılır. Böylece küçük bir yansıtma yüzeyine sahip bir nesneden çok kuvvetli bir yansıma elde edilir.

Radyo frekansı yayıncılıkta bir bilgi sinyali ile modüle edilmiş olan taşıyıcı sinyal anlamına gelir. Ancak, bu isim zamanla modüle edilsin, edilmesin, yüksek frekans anlamına da kullanılmaya başlanmıştır.

<span class="mw-page-title-main">Koaksiyel kablo</span> televizyon ve uydu iletişim sistemlerinde kullanılan kablo türü

Koaksiyel kablo radyo frekansta kullanılan bir kablo türüdür. Bu kablonun kesit alanı iç içe dört maddeden meydana gelir. En içte canlı hat, yani sinyali taşıyan hat vardır. Bu uç dielektrik sabiti yüksek bir yalıtkan ile çevrelenmiştir. Yalıtkanın çevresinde iletkenlerden oluşan bir örgü vardır. Bu örgü topraklanmıştır. En dışta ise koruyucu kılıf yer alır. Bu yapı koaksiyel kabloların kendi kalınlığındaki diğer kablolara göre daha elastiki olmalarını sağlar.

Bir nanoanten, ışığı elektrik gücüne dönüştürmek için geliştirilmiş deneysel bir teknoloji olan nanoskopik rektifiye bir antendir. Yani nanoantenler ile ilgili kavram kablosuz güç iletiminde kullanılan bir cihaz olan rektifiye antenlere dayanır. Bir rektifiye anten radyo dalgalarını doğru akıma dönüştüren özelleştirilmiş bir radyo antenidir. Işık, radyo dalgalarına benzeyen elektromanyetik dalgalardan oluşur fakat; daha küçük dalga boylarına sahiptir. Bir nanoanten, nanoteknoloji kullanılarak üretilmiş, ışık için anten görevi gören ve ışığı elektrik akımına dönüştüren, hemen hemen bir ışık dalgası boyutunda olan çok küçük rektifiye antendir. Nanoanten dizilerinin geleneksel güneş pillerine göre daha verimli bir şekilde güneş ışığını elektrik gücüne dönüştüren bir araç olmaları beklenir. Bu fikir ilk olarak Robert L. Bailey tarafından 1972 yılında ortaya atılmıştır. 2012 itibarıyla enerji dönüşümünün mümkün olduğunu gösteren sadece birkaç adet nanoanten cihazı üretilebilmiştir. Nanoantenlerin bir gün fotovoltaik piller kadar etkin maliyetli olabilecekleri halen bilinememektedir. Bir nanoanten, nanoantenin boyutuna uygun spesifik dalga boylarını absorbe etmek için tasarlanmış bir elektromanyetik kollektördür. Bu günlerde Idaho Ulusal Laboratuvarları 3-15 μm uzunluğundaki dalga boylarını absorbe etmek üzere tasarlanmış bir nanoanten tasarlamaktadır. Bu dalga uzunluğu 0.08 - 0.4 eV foton enerjisine karşılık gelir. Anten teorisine göre, bir nanoanten, nanoantenin boyutu belirli bir dalga boyu için optimize edilmiş olmak koşuluyla, herhangi bir dalgaboyundaki ışığı verimli bir şekilde absorbe edebilir. İdeal olarak nanoantenler 0.4 - 1.6 μm arasındaki dalga boylarını absorbe etmek için kullanılmalıdırlar. Çünkü bu aralıktaki dalga boyları, uzak- kızılötesinden daha yüksek enerjiye sahiptirler ve solar radyasyon spektrumunun yaklaşık olarak %85'ini oluştururlar.

<span class="mw-page-title-main">Döngü anten</span>

Döngü veya çerçeve anten, uçları dengeli bir iletim hattına bağlı olan döngü şeklinde bir kablo, boru sistemi veya diğer elektriksel iletkenden oluşan bir radyo antenidir. Fiziksel tanımı içerisinde iki belirgin anten tasarımı vardır: boyutu bir dalga boyundan çok daha küçük olan küçük döngü anteni veya çevresi yaklaşık olarak dalga boyuna eşit olan salınım yapan döngü anteni.

Hesaplamalı elektromanyetik, hesaplamalı elektrodinamik veya elektromanyetik modelleme elektromanyetik alan ile fiziksel nesnelerin ve çevrenin etkileşimini modelleme işlemidir.

<span class="mw-page-title-main">Yüzey katmanı etkisi</span>

Yüzey katmanı etkisi ; akım yoğunluğu iletkenin yüzeyinin yakınında en büyük olacak şekilde bir iletken içinde dağıtılan bir alternatif elektrik akımı (AC) eğilimidir ve iletkenin derinliklerinde azalır. Elektrik akımı, iletkenin dış yüzeyi ile yüzey derinliği denilen bir derinlik arasında ağırlıklı olarak akar. Yüzey etkisi yüzey derinliğinin küçük olduğu yerlerde yüksek frekanslar için iletkenin direncinin artmasına sebep olur. Böylece, iletkenin kesitinin etkisini azaltır. Deri etkisi alternatif akımdan kaynaklanan değişen manyetik alanın neden olduğu Eddy akımına karşıt kaynaklanmaktadır. 60 Hz'de bakır'ın yüzey derinliği yaklaşık 8,5 mm. Yüksek frekanslarda yüzey derinliği çok daha küçük olur. Yüzey etkisi nedeniyle artan AC direnç özel dokuma litz tel kullanılarak hafifletilebilir. Çünkü büyük bir iletkenin iç akımını çok az taşır. Ayrıca bu tür boru gibi boru şeklinde iletkenler ağırlık ve maliyet tasarrufu için kullanılabilir.

<span class="mw-page-title-main">Parabolik anten</span>

Parabolik anten, süper yüksek frekansta (SHF), daha ender olarak ultra yüksek frekansta (UHF) kullanılan bir anten türüdür. Halk arasında bu antenlere çanak anten de denilir. Bu antenler hem alıcılarda hem de vericilerde kullanılır.

Orta Dalga, telekomünikasyonda kullanılan bir frekans bandının adıdır. Bu bant radyo yayıncılığına tahsis edilmiştir.

Yeni bir enerji kaynağı olan enerji hasatlama sistemler ortamda bulunan mevcut elektromanyetik enerjinin kullanılarak verimli doğru akıma dönüştürülmesini hedeflemektedir. Ortamda mevcut olarak bulunan Radyo frekans enerjisi, çeşitli elektronik devre ve cihaz uygulamalarında kullanılmak üzere enerji toplayıcı devrelerce alınır, doğrultularak doğru akım ve gerilim elde edilir. İhtiyaç olan enerjiyi, ortamdaki RF sinyal kaynaklarından temin etme işlemine RF Enerji Hasatlama adı verilmektedir. RF enerji hasatlama devreleri, sensörler, düşük güçlü entegre devreleri ve kablosuz haberleşme modülleri gibi düşük güç tüketen projelerde sürekliliği olan bir enerji kaynağı oluşturmayı amaçlamaktadır. RF enerji toplama sistemi, temelde iki ana bileşenden oluşmaktadır. Bunlar; RF enerjiyi toplayan bir anten ve RF enerjisini doğrultarak doğru akıma çeviren yüksek verimli bir doğrultucu devredir.

X Band Uydu Haberleşmesi, elektromanyetik spektrumun mikrodalga frekans bandında kullanılan bir haberleşme türüdür. X bandı, genellikle askeri, radar ve uydu iletişimi sistemlerinde tercih edilen bir frekans aralığıdır.