
Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

Keşif: 1970 - Birleşik Nükleer Araştırmalar Enstitüsü, yapay, radyoaktif. İsmini Moskova'nın kuzeyindeki Dubna kasabasından almıştır, çünkü element ilk olarak orada üretilebilmiştir. Doğada bulunamaz, yalnızca laboratuvar ortamında elde edilebilir.

Kuark, bir tür temel parçacık ve maddenin temel bileşenlerinden biridir. Kuarklar, bir araya gelerek hadronlar olarak bilinen bileşik parçacıkları oluşturur. Bunların en kararlıları, atom çekirdeğinin bileşenleri proton ve nötrondur. Renk hapsi olarak bilinen olgudan ötürü kuarklar asla yalnız bir şekilde bulunmaz, yalnızca baryonlar ve mezonlar gibi hadronlar dahilinde bulunabilir. Bu sebeple kuarklar hakkında bilinenlerin çoğu hadronların gözlenmesi sonucunda elde edilmiştir.
Takyon, ışıktan hızlı giden farazi parçacıklardır. İlk tanımı Arnold Sommerfeld'e atfedilmişse de, aslında ilk olarak George Sudarshan ve Gerald Feinberg tarafından yazılmıştır. Çoğu fizikçi için fiziğin bilinen yasaları ile tutarlı değildir, çünkü ışıktan daha hızlı parçacıkların olamayacağı tahmin edilmektedir. Takyonlar, Albert Einstein'in ünlü Genel görelilik yasasındaki v2 /c2 ifadesindeki cismin hızı (v) ışık hızından (c) büyük olursa ne olur sorusunun cevabıdırlar. Bu nedenle takyon parçacıklarının kütleleri reel sayı ile değil karmaşık sayılar ile ifade edilir aynı zamanda v daima c den büyük olacağından, takyonlar için en yavaş hız ışık hızıdır. Ancak tam olarak ışık hızında da olamazlar çünkü ışık hızında olursalar v2/c2 = 1 olacağından bu ifade tanımsız olur. Bununla birlikte, negatif kare kütle alanlar genellikle, "takyonlar" olarak adlandırılır ve aslında modern fizikte önemli bir rol oynamaya başlamıştır. Potansiyel tutarlı teoriler, ışıktan daha hızlı parçacıkların Lorentz değişmezinin kırılmasına dahil olanlara izin verir böylece özel göreceliğin altında yatan simetriye, ışığın hızı bir bariyer değildir, Böylece gerçek dünya için sınır olan ışık hızı burada da değerini korur. Buradan çıkarılacak sonuç ise, takyonların varlığının fizik ve matematik kurallarına aykırı olmadığıdır. Bunu takyonların varlığına delil olarak gösterenler vardır. Aynı (v)>(c) değerlerinin zaman denklemi içinde yerine konulması sonucunda zaman kavramının takyonlar için tıpkı kütle gibi imajiner olduğunu gösterir. Zaman gerçek olmadığı içinde zamanın oku olan entropi artışı söz konusu olmaz ve bu nedenle takyonlar evreni gerçek evrenin aksine büzüşmezler tam tersine sanal kütleleri nedeniyle çekim etkisine girmediklerinden evreni gererler. Böylece, başlanılan noktaya geri dönülen bir küresel evren modeli yerine takyon evreni için kenarları olmayan bir sonsuz evren söz konusudur. Ayrıca takyonların hızı enerjileri azaldıkça artar. Bu nedenle radyasyon yaydıkları varsayıldığında, azalan enerjileri nedeniyle sürekli hızlanırlar ve nihayet sıfır enerji için sonsuz hıza ulaşırlar. Enerji azaldıkça hızları arttığından dolayı kuvvet denilen etki hareketle aynı yönde olduğunda takyonların hızını arttırmaz tam tersine yavaşlatır. Birçok fizikçinin nötrino ve teorik takyonların özellikleri arasındaki olası bağlantıyı anlamaya çalışmış olduğuna dikkat etmek önemlidir.
Parçacık fiziğinde bir hadron, güçlü etkileşim tarafından bir arada tutulan taneciklerden oluşan bir bileşik parçacıktır.
Yukarı kuark en hafif kuarktır, temel bir parçacıktır ve maddenin önemli bir bileşenidir. Aşağı kuarkla birlikte atom çekirdeğini meydana getiren proton ve nötronu oluşturur. Birinci nesil olarak sınıflandırılırlar. Elektrik yükü +2/3 e olup çıplak kütleleri 2,2+0,5
-0,4 MeV/c2 olarak ölçülmüştür. Bütün kuarklar gibi yukarı kuark da 1/2 spine sahip temel fermiyondur ve dört temel etkileşimin hepsinden etkilenir. Yukarı kuarkın antiparçacığı olan yukarı antikuark ile elektriksel yük işareti gibi birkaç özellikte farklılaşır.
Preonlar parçacık fiziğinde, kuarklar ve leptonların altparçacıkları olan nokta parçacıklardır. Terim 1974’te, Jogesh Pati ve Muhammed Abdüsselam tarafından oluşturulmuştur. Preon modellerine olan ilgi, 1980’lerde zirve noktasına ulaşmıştır ancak parçacık fiziği Standart Model'i, fiziğin kendisini en başarılı şekilde tanımlamaya devam ettiğinden ve lepton ile kuark kompozitleri hakkında hiçbir deneysel veri bulunmadığından dolayı bu ilgi azalmıştır.
Per-Olov Löwdin İsveçli fizikçi, Uppsala Üniversitesi'nde profesör, paralel olarak 1993'e kadar Florida Üniversitesi'nde profesör. Ivar Waller adı altındaki eski lisans öğrencisi, Löwdin 1950 yılında moleküler orbital hesaplamalar için simetrik ortogonalizasyon düzenlemeleri yapmıştır. Bu şema Yarı-ampirik teorileri kullanılan sıfır diferansiyel örtüşme (ZDO) yaklaşım temelidir. Löwdin ayrıca kolay kuantum mekaniğinin çeşitli teoremlerin türetmelerini matrisleri için sembolleri kullanarak oluşturmuştur. ROHF,UHF ve RES-GVB teorilerinde kullanılan meşhur “Löwdin’s pairing theorem” onun değildir. Kendisine göre George G. Hall ve King Löwdin 'in resmi olmayan önerisinden sonra resmi bir sunum yapmışlardır. 1963 ve 1971 yılları arasında yayınlanmış pertürbasyon teorisi üzerindeki 14 sayfa dizi kuantum kimyası için en iyi bölümleme tekniği olarak görülmüştür. Löwdin ayrıca 1958 yılında Uppsala'da kuantum kimyası yaz okulundan başlayarak çok etkili ve aktif bir öğretmendir. 1958 ve 1960'ta Uppsala Üniversitesi kuantum kimyası grubuna kardeş olarak Florida Üniversitesi'nde kuantum teorisi projesine başlamıştır. Uluslararası Kış Enstitüleri yüzlerce Latin Amerikanların seksenler ve doksanlar boyunca katılımlarını sağladı. 1960 yılında Kış Enstitüsünün içindeki birleşimde Sanibel sempozyumunu kurdu. 1960'tan sonra her yıl düzenlenmiştir. Löwdin 1969'da İsveç Kraliyet Bilimler Akademisi üyesi olarak seçilmiş ve 1972'den 1984'e kadar Fizik Nobel Ödülü komitesinde bulunmuştur. Kuantum kimyası uluslararası gazetesi ve kuantum kimyası gelişmeler serisi kurucudur. Uluslararası Kuantum Moleküler Bilimler Akademisi'nin de vakıf üyesidir.
Deneysel parçacık fiziğinde kayıp enerji, varlığı enerjinin ve momentumun korunum yasalarıyla bilinen fakat parçacık dedektöründe saptanamayan enerji demektir. Kayıp enerji; elektromanyetik veya güçlü kuvvetlerle etkileşime girmeyen, bu yüzden de parçacık dedektöründe kolayca gözükmeyen parçacıklar tarafından taşınır. Bunların en büyük örneği nötrinolardır. Genellikle, tespit edilemeyen parçacıkların varlığına işaret etmek için kullanılır ve Standart Model Ötesi Fizik teorilerinin imzasıdır.

Parçacık fiziğinde proton bozunması, protonun nötr bir pion ve bir pozitron gibi daha hafif atom altı parçacıklara bozunduğu varsayımsal bir parçacık bozunma biçimidir. Proton bozunumu hipotezi ilk olarak 1967'de Andrey Saharov tarafından formüle edildi. Önemli deneysel çabalara rağmen, proton bozunması hiçbir zaman gözlemlenmedi. Bir pozitron aracılığıyla bozunursa, protonun yarı ömrü en az 1,67 x 1034 yıl olarak sınırlandırılır.
Tetrakuark, parçacık fiziğinde, dört valans kuarktan oluşan ve varlığı tahmin edilmesine karşın henüz kanıtlanamamış egzotik mezondur. Prensipte, bir tetrakuark durumu kuantum renk dinamiği içinde yer alabilmektedir.

Pentakuark, birbirlerine bağlı durumdaki dört kuark ile bir antikuarktan oluşan atomaltı parçacıktır. Kuarkların +1/3, antikuarkların ise - 1/3 baryon sayısına sahip olmalarından ötürü pentakuarkların toplam baryon sayısı 1'dir ve bu da pentakuarkların baryon olarak tanımlanmasını sağlar. Normal baryonların aksine üç değil de beş kuark bulundurmasından ötürü egzotik baryon olarak sınıflandırılır.

Egzotik hadron, kuarklar ile gluonlardan meydana gelen, sıradan hadronların aksine iki ya da üç kuarktan fazlasını içeren atomaltı parçacıktır. Egzotik baryonlar, üç kuarka sahip sıradan baryonlardan; egzotik mezonlar ise birer kuark ve antikuarka sahip sıradan mezonlardan ayrılır. Teoride, renk yükü beyaz olduğu müddetçe bir hadronun kuark sayısında herhangi bir limit yoktur.

Luciano Maiani, San Marinolu fizikçidir. Parçacık fiziği ile teorik fizik alanlarında faaliyetlerde bulunan Maiani; 1970'te yayınlanan, Sheldon Glashow ve Yannis İliopulos ile elde ettiği deneylerin sonuçlarının yer aldığı makalede, henüz keşfedilmemiş tılsım kuarkın varlığına dair yeni kanıtlar sunmuştu.

Yannis İliopulos, Yunan fizikçi ve akademisyendir. Parçacık fiziği ile teorik fizik alanlarında faaliyetlerde bulunan İliopulos; 1970'te yayınlanan, Sheldon Glashow ve Luciano Maiani ile elde ettiği deneylerin sonuçlarının yer aldığı makalede, henüz keşfedilmemiş tılsım kuarkın varlığına dair yeni kanıtlar sunmuştu.
Parton, Richard Feynman tarafından ortaya atılan bir hadron modelidir. Stanford Doğrusal Hızlandırıcı Merkezi'nde (SLAC) 1968 yılında yapılan derin inelastik saçılma deneyleri, protonun daha küçük, nokta benzeri parçacıklardan oluştuğunu ve böylece bir temel parçacık olmadığını gösterdi. O dönemde fizikçiler bu nesneleri kuarklar ile ilişkilendirmek konusunda tereddütlü olduklarından parçacıklar, Feynman tarafından türetilen "parton" olarak adlandırdı. Bu deneyler sırasında gözlemlenen cisimler, diğer çeşnilerin de keşfedilmesiyle daha sonra yukarı ve aşağı kuark olarak tanımlanacaktı. Buna rağmen parton, hadronların bileşenlerini tanımlayan ortak bir terim olarak kullanımda kaldı.

J/psi mezonu veya psion bir atomaltı parçacık. Bir tane tılsım kuark ve bir de tılsım antikuarktan oluşan bir çeşni değiştiren yüksüz mezonudur. Bir tılsım kuark ve bir tılsım antikuarkın bağlı hali ile oluşan mezonlar "karmoniyum" olarak anılır. En yaygın karmoniyum, düşük değişim kütlesi, 3.0969 GeV/c23,0969 GeV/c2 yani ηc̅ ' nin (2.9836 GeV/c22,9836 GeV/c2) biraz üzerinde, sebebi ile J/psi mezondur. Bu mezon ortalama 7.2×10−21 s7,2×10-21 s ömre sahiptir.Fakat bu süre tahmin edilen 1000 kat daha uzundur.
Ksi baryonları, birinci çeşni nesillerinden bir kuarka, daha yüksek çeşnili nesillerinden ise iki kuarka sahip, Ξ sembolüyle gösterilen hadron parçacığı ailesidir. Bu nedenlerden ötürü bu tip parçacıklar birer baryondur, toplam izospinleri 1/2'dir ve nötr olabildikleri gibi +2, +1 ya da -1 temel yüke sahip olabilirler. Yüklü Ksi baryonları ilk kez 1952'de, Manchester grubu tarafından gerçekleştirilen kozmik ışın deneyleri sırasında gözlemlenmiştir. Nötr Ksi baryonlarının ilk kez gözlemlenmesi ise 1959'da, Lawrence Berkeley Ulusal Laboratuvarı'nda gerçekleştirildi. Kararsız durumları, bozunma zinciri sonucunda daha hafif parçacıklara bozunmaları sebebiyle geçmişte çağlayan parçacıklar olarak da anılmaktaydılar.
Omega baryonları, birinci çeşni nesillerinden (yukarı ve aşağı kuarklar) herhangi birini içermeyen, daha yüksek çeşnili nesillerinden (garip, tılsım ve alt kuarklar) üç kuarka sahip, Ω sembolüyle gösterilen hadron parçacığı ailesidir. Hadronlaşma için gereken güçlü etkileşim süresinin altında (5×10-25 s) ortalama yaşam süresine sahip olmaları nedeniyle üst kuark içeren bir omega baryonu gözlemlenmemiş ve gözlemlenmesi de beklenmemektedir. Bu nedenlerden ötürü bu tip parçacıklar birer baryondur, toplam izospinleri 0'dır ve nötr olabildikleri gibi +1 temel yüke sahip olabilirler. Üç garip kuarktan oluşan
Ω-
, 1964 yılında gözlemlenmiştir ve keşfedilen ilk omega baryonudur.
Kuantum elektrodinamiğinde bir parçacığın anormal manyetik momenti, döngülerle beraber Feynman diyagramları ile ifade edilen kuantum mekaniğinin, o parçanın manyetik momentine etkilerinin bir katkısıdır.