İçeriğe atla

Güneş yanığı

Güneş yanığı, derinin güneş ışığına kısa sürede ve aşırı miktarda maruz kalması sonucunda meydana gelen bir rahatsızlık.[1] Dalga boyu 300 nanometre civarında olan ultraviyole ışınları buna sebep olur. Işığa maruz kalan deri önce en dış tabakasını kalınlaştırarak ışığın tesirinden kendini korumaya çalışır. Hemen ardından deriye rengini veren bir pigment olan Melanin yapımını arttırır. Derinin rengi bu pigmentin artmasından dolayı koyulaşır. Işığa maruz kalma daha da uzarsa 1-24 saat içinde rahatsızlık belirtileri kendini göstermeye başlar. Belirtiler hafif bir kırmızılıktan derinin balonlaşmasına kadar değişir.

Yazın ilk defa güneşlenmeye çıkanlar 30 dakikadan fazla kalmamalıdır. Sabah saat 10.00'dan önce, akşamüstü saat dörtten sonra güneş ışınlarının en az zararlı oldukları zamanlardır. Bulutlar güneşin ultraviyole ışınlarının büyük kısmını zaptederlerse de, bir kısmını bıraktıklarından gölgede de yanma olmaktadır. Atmosferin üst kısmında bulunan ozon tabakası, güneşin öldürücü şualarının büyük bir bölümünü tutmaktadır. Güneş yağları ve kremleri mutlak koruyucu olarak bilinmemelidir. Bunların içinde % 5 amino benzoik asit ihtiva edenleri en faydalı olanlardır. ()

Güneş yanığının tedavisinde ilk yapılacak olan soğuk komprestir. Ağrı giderici pomatlara rağbet etmemelidir. Şiddetli yanıklarda steroit ihtiva eden haplar doktor tavsiyesine göre kullanılabilir.

Deride kabarıklık, aşırı kızarıklık, su toplama, baş ağrısı, titreme ve kusma gibi şikayetleriniz varsa güneş yanığı tedavisi için hekime başvurmalısınız. Bu şikayetler durumunuzun ciddi olduğunu ve uzman müdahale gerektirdiğini gösterir.

Kaynakça

  1. ^ "Anadolu Sağlık web sitesi". 30 Nisan 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Nisan 2024. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Işık</span> elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon

Işık veya görünür ışık, elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon. Görünür ışık genellikle 400-700 nanometre (nm) aralığında ya da kızılötesi ve morötesi arasında 4.00 × 10−7 ile 7.00 × 10−7 m dalga boyları olarak tanımlanır. Bu dalga boyu yaklaşık 430-750 terahertz (THz) frekans aralığı anlamına gelir.

<span class="mw-page-title-main">Güneş</span> Güneş Sisteminin merkezinde yer alan yıldız

Güneş, Güneş Sistemi'nin merkezinde yer alan bir yıldızdır. Çekirdeğindeki nükleer füzyon reaksiyonları ile akkor hale gelene kadar ısınan, %10'u morötesi olmak üzere esas olarak görünür ışık ve kızılötesi radyasyon olarak yüzeyinden enerji yayan, oldukça büyük ve sıcak bir plazma küresidir. Dünya'daki yaşam için açık ara en önemli enerji kaynağıdır. Güneş birçok kültürde kutsallık atfedilen bir nesne olmuştur. Antik çağlardan beri astronomik araştırmalar için merkezi bir konudur.

<span class="mw-page-title-main">Skuamöz hücreli karsinom</span> Skuamöz epitel hücrelerinden türeyen karsinom

Skuamöz hücreli karsinom (SCC) ya da yassı hücreli karsinom bir kanser çeşidi olan karsinomun alttiplerinden olup birçok organdan köken alabilir. Bu organlardan birkaçı; cilt, akciğer, dudak, ağız, mesane, vajina, serviks olup örnekler artırılabilir.

Fotoelektrik etki ya da fotoemisyon, ışık bir maddeyi aydınlattığında elektronların ya da diğer serbest taşıyıcıların ortaya çıkmasıdır. Bu bağlamda ortaya çıkan elektronlar, fotoelektronlar olarak adlandırılır. Bu olay genellikle elektronik fiziğinde hatta kuantum kimyası ya da elektrokimya gibi alanlarda çalışılır.

<span class="mw-page-title-main">Melanin</span>

Melanin, suda erimeyen genellikle kahverengi-sarı, fazla yoğunlaştığı bölgelerde kara renkli bir pigmenttir. Doğadaki üç kahverengi pigmentten biridir; öteki ikisi lipofuscin ve hemosiderin’dir. Gözün irisinde mavi ya da yeşil renkli olabilir.

<span class="mw-page-title-main">Pigment</span>

Pigment ya da boyar madde, suda tamamen veya hemen hemen çözünmeyen renkli bir malzemedir. Bunun tersine, boyalar genelde, en azından kullanımlarının bir aşamasında çözünürdür. Boyalar genellikle organik bileşik pigmentler ise genellikle inorganik bileşikdir. Tarih öncesi ve tarihi değeri olan pigmentler arasında koyu sarı, odun kömürü ve lapis lazuli bulunur. Sanayide olduğu kadar sanatta da kalıcılık ve istikrar istenen özelliklerdir. Kalıcı olmayan pigmentler kaçak olarak adlandırılır. Kaçak pigmentler zamanla veya ışığa maruz kaldıkça solarken bazıları sonunda kararır. Pigmentler boya, mürekkep, plastik, kumaş, kozmetik, gıda ve diğer malzemeleri renklendirmede kullanılır. İmalat ve görsel sanatlarda kullanılan çoğu pigment kuru renklendiricidir ve genellikle ince bir toz hâlinde öğütülür. Boyada kullanım için bu toz, pigmenti askıya alan görece nötr veya renksiz bir malzeme olan bağlayıcıya eklenir ve boyaya yapışkanlık verir. Genellikle aracında çözünmez olan bir pigment ile kendisi bir sıvı olan veya aracında çözünen boya arasında bir ayrım yapılır. Renklendirici, ilgili araca bağlı olarak bir pigment veya bir boya görevi görebilir. Bazı durumlarda pigment, bir metalik tuzla çözülebilir bir boyanın çökeltmesi ile boyadan üretilebilir. Oluşan pigmente göl pigmenti denir. Biyolojik pigment terimi, çözünürlüklerinden bağımsız olarak tüm renkli maddeler için kullanılır.

<span class="mw-page-title-main">Bronzlaşma</span>

Bronzlaşma, güneşten kaynaklanan ultraviyole ışık ile deri renginin doğal bir fizyolojik cevap ile kararmasıdır. Güneşte fazla kalmak ile güneşlenilen bölgede güneş yanığı da oluşabilir.

<span class="mw-page-title-main">Albinizm</span> Ciltte pigment eksikliğine neden olan genetik bozukluk.

Albinizm ya da akşınlık, derideki melanositlerin melanin pigmentini üretebilmeleri için gerekli olan tirosinaze (tyrosinase) enziminin eksikliğinin sonucu ortaya çıkan doğumsal bir hastalıktır. Bu hastalığa albinizm, hastalara ise albino denir.

Ultraviyole (UV) veya morötesi; dalga boyu görünür ışıktan kısa, ancak X-ışınlarından uzun olan bir elektromanyetik radyasyon şeklidir. Güneş ışığında bulunur ve Güneş'ten çıkan toplam elektromanyetik radyasyonun yaklaşık %10'unu oluşturur. Ayrıca elektrik arkları, Çerenkov radyasyonu, cıva buharlı lambalar, bronzlaşma lambaları ve siyah ışık gibi kaynaklar tarafından üretilir. Uzun dalga boylu UV fotonları atomları iyonize edecek enerjiye sahip olmadığı için iyonlaştırıcı bir radyasyon olarak kabul edilmese de, kimyasal reaksiyonlara neden olabilir ve birçok maddenin parlamasına neden olabilir. Kimyasal ve biyolojik etkiler de dahil olmak üzere pek çok pratik uygulama, UV radyasyonunun organik moleküllerle etkileşime girmesinden türer. Bu etkileşimler emilimi veya ısıtma dahil moleküllerdeki enerji durumlarının ayarlanmasını içerebilir.

<span class="mw-page-title-main">X ışını</span> Elektromanyetik radyasyon

X ışınları veya Röntgen ışınları, 0,125 ile 125 keV enerji aralığında veya buna karşılık, dalgaboyu 10 ile 0,01 nm aralığında olan elektromanyetik dalgalar veya foton demetidir. 30 ile 30.000 PHz (1015 hertz) aralığındaki titreşim sayısı aralığına eşdeğerdir. X ışınları özellikle tıpta tanısal amaçlarla kullanılmaktadırlar. İyonlaştırıcı radyasyon sınıfına dahil olduklarından zararlı olabilirler. X ışınları 1895'te Wilhelm Conrad Röntgen tarafından Crookes tüpü (Hittorf veya Lenard tüpleri ile de) ile yaptığı deneyler sonucunda keşfedilmiştir. Klasik fizik sınırları içinde, X-ışınları aynı görünür ışık gibi bir elektromanyetik dalga olup, görünür ışıktan farkı düşük dalga boyu, dolayısıyla yüksek frekansları ve enerjileridir. Morötesi'nin ötesidir. X Işınlarının ötesi ise Gama ışınları'dır.

<span class="mw-page-title-main">Işık haslığı</span>

Işık haslığı, bir rengin ya da rengi oluşturan ham maddelerin ışığın ultraviyole etkisi karşısında uğrayacağı zararın derecesidir. Ultraviyole ışın, renk bileşenlerinin yapısını bozabilecek güçtedir. Yani halk dilinde rengi soldurabilmektedir. Renk bozulma ve solmalarının hızı, rengin ışık haslığı derecesi ve ultraviyole ışığın miktarıyla orantılıdır.

<span class="mw-page-title-main">Ozonosfer</span> Stratosfer bölgesi

Ozonosfer veya ozon tabakası, stratosferin üst kısmında bulunan tabakadır. Ozon tabakası Güneş'ten gelen morötesi ışınlardan olan UV-B ve UV-C gibi zararlı ışınları tutar. Ozon tabakasının bu işlevi hayati açıdan çok önemlidir çünkü UV-B ve UV-C ışınları ölümcüldür.

<span class="mw-page-title-main">Radyasyon</span> Uzayda hareket eden dalgalar veya parçacıklar

Radyasyon veya ışınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yaymasına" veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamına" da radyasyon denir. Bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla veya oldukça az ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar. Çevresine bu şekilde ışın saçarak parçalanan maddelere radyoaktif madde denir.

<span class="mw-page-title-main">Radyasyon basıncı</span> elektromanyetik radyadasyona maruz kalan herhangi bir yüzeye uygulanan basınçtır

Işınım ya da radyasyon basıncı, elektromanyetik radyasyona maruz kalan herhangi bir yüzeye uygulanan basınçtır. Kabın duvarına çarpan gaz moleküllerinin veya deriye çarpan hava moleküllerinin uyguladığı basınç gibi, momentuma sahip olan fotonlar bir aynaya çarptığında, buna benzeyen bir basınca neden olur. Bir ışık demetinin basınç yaratırsa, yaratacağı basıncın çok küçük olması gerektiği tahmin edilebilir. Yirminci yüzyıl başlarına kadar, yapılan deneyler ışık basıncının varlığını kanıtlayamadı. Rusya'da Peter Lebedev ve Amerika Birleşik Devletleri'nde Nichds ve Hull bu basıncın varlığını gösterip değerini ölçmeyi başarmışlardır. Bu bilginler deneyle buldukları sonuçlardan, parlak güneşli bir öğle zamanı güneş ışınlarının yarattığı basıncın, tek bir molekül tabakası halinde yatay bir yüzeye yayılmış olan zeytinyağının basıncı kadar olduğunu belirtmişlerdir. Bu çok küçük bir basınçtır; ama ışık basıncı her zaman bu kadar küçük değildir. Tanecik teorisinden, bu basıncın aydınlanma şiddetiyle artacağı tahmin edilmiş ve tahmin deneylerle doğrulanmıştır. Örneğin; ışık basıncı Güneş'in yüzünde, güneş ışınlarının yeryüzündeki basıncından yüzlerce defa daha büyüktür.

<span class="mw-page-title-main">Atmosfer optiği</span>

Atmosfer optiği Dünya atmosferinin kendine özgü optik özelliklerinin nasıl geniş ölçüde optik olgulara yol açtığını inceler. Gökyüzünün mavi rengi, yüksek frekanstaki mavi güneş ışığını gözlemcinin görüş alanına yönlendiren Rayleigh dağılımının direkt bir sonucudur. Mavi ışık kırmızıdan daha kolay dağılıma uğradığı için güneş kalın bir atmosferden gözlendiğinde kırmızı bir ton alır, bu da gündoğumu veya günbatımında olur. Ek olarak gökyüzündeki parçacıklar farklı renkleri farklı açılarda kırarak akşam veya şafak vaktinde rengarenk parlayan bir gökyüzü meydana getirebilir. Haleler, günbatımı parlaklığı, koronalar, güneş ışınları ve yalancı güneşlerin oluşmasında buz kristallerinden ve diğer parçacıklardan saçılım sorumludur. Bu olgulardaki çeşitlilik parçacık boyut ve geometrilerine bağlıdır.

<span class="mw-page-title-main">İyonlaştırıcı olmayan radyasyon</span> Düşük frekanslı radyasyon

İyonlaştırıcı olmayan radyasyon, bir atomdan veya molekülden bir elektronu tamamen koparabilmek için atomları veya molekülleri iyonlaştırabilecek yeterli enerji taşıyan kuantumlara sahip olmayan herhangi bir elektromanyetik radyasyon türüdür. Elektromanyetik radyasyon, maddenin içinden geçerken yüklü iyonlar üretmez. Yalnızca, bir elektronu daha yüksek enerji seviyesine çıkaran uyarım için yeterli enerjiye sahiptir. İyonlaştırıcı olmayan radyasyondan daha yüksek bir frekansa ve daha kısa dalga boyuna sahip olan iyonlaştırıcı radyasyon birçok kullanım alanına sahiptir, ancak sağlık için bir tehdit olabilir. İyonlaştırıcı radyasyona maruz kalmak yanıklara, radyasyon hastalıklarına, kansere ve genetik hastalıklara sebep olabilir. İyonlaştırıcı radyasyon kullanmak, iyonlaştırıcı olmayan radyasyon kullanılırken genelde gerekli olmayan dikkatli ve özenle alınmış radyolojik korunma önlemleri gerektirir.

<span class="mw-page-title-main">Cilt rengi</span>

İnsanda cilt rengi esasen vücuttaki melanin miktarına bağlıdır. Cilt rengi siyahtan beyaza kadar değişken bir şekildedir ve evrimsel nedenleri tam olarak belli olmasa da cilt renginin insanın genetiğinden kaynaklandığı bilinmektedir. İnsan cildinin en üst tabakası renksizdir. Melanin cildin 1. ve 2. tabakalarında bulunur ve cilde rengini verir. İnsan vücuduna renk veren melanin pigmentleri güneşten gelen zararlı ultraviyole ışınlarına karşı kişiyi korur ve pigmentler insan vücudunda sıcak ve güneşli bölgelerde daha çok salgılanır, bu yüzden sıcak bölgelerde deri rengi daha koyudur. Melanin pigmentlerinin salgılanmasından genler sorumludur. Bu yüzden ekvatora yakın bir yere giden bir kimsenin cilt renginin bir anda koyulaşması ve kişinin siyahi olması imkânsızdır. Aynı şekilde belirtilen kişinin çocukları da siyahi olamaz. Bunun için çok uzun yılların geçmesi gerekir. Bu süreç içerisinde, coğrafya koşulları kişinin gen havuzuna işleyerek gelecek nesillerin kademeli olarak siyahlaşmasını sağlar. Açık olan cilt rengi aşırı güneş ışığına maruz kalmanın sonucunda kararabilir. Cilt rengi bazı kültürlerde hâlen çok önemlidir ve sosyal statüyü belirler.

Optik radyasyon elektromanyetik spektrumun bir parçasıdır. Ultraviyole radyasyona (UV), insan için görülebilen ışık spektrumuna (VIS) ve kızılötesi radyasyona (IR) ayrılır. 100 nm ve 1mm dalga boyu arasında değişir. Bu aralıktaki elektromanyetik dalgalar optik yasalarına uyar - örneğin lenslerle odaklanabilir ve kırılabilirler-.

<span class="mw-page-title-main">Ultraviyole mikrop öldürücü ışınlama</span>

Ultraviyole mikrop öldürücü ışınlama (UVGI) mikroorganizmaların nükleik asitleri yok edip DNA'larını bozarak hayati hücresel işlevleri yerine getiremez hale getirip öldürmek veya etkisizleştirmek için kısa dalga boylu ultraviyole ışığı kullanan dezenfeksiyon yöntemidir. UVGI gıda, hava ve su arıtma gibi çeşitli uygulamalarda kullanılır.

Güneş kremi, cildimizi güneşin zararlı ultraviyole (UV) ışınlarından korumak için kullanılır. Güneş kremleri, UVA ve UVB ışınlarının sebep olduğu cilt hasarını önlemeye yardımcı olur. Güneş kremleri, etkilerine göre kimyasal ve fiziksel olarak iki ana kategoriye ayrılmaktadır: Kimyasal güneş kremleri, cilde uygulandığında UV ışınlarını emerek zararsız enerjiye dönüştüren organik bileşenler içerir. Fiziksel güneş kremleri ise, cilt üzerinde bir bariyer oluşturarak ışınların yansıtılmasını sağlayan inorganik bileşenlerden oluşur.