İçeriğe atla

Güneş kütlesi

En büyük yıldızların büyüklükleri ve kütleleri: En büyükleri, mavi Tabanca Yıldızı, 150 güneş kütlesi. Diğerleri Rho Cassiopeiae, 40 güneş kütlesi, Betelgeuse, 20 güneş kütlesi ve VY Canis Majoris,17 güneş kütlesi. Güneş örnek olarak verilen bu yıldızların büyüklük ölçeğinde görünmüyor. Ayrıca Dünya’nın yörüngesi(gri), Jüpiter’in yörüngesi(kırmızı) ve Neptün’ün yörüngesi(mavi) de ölçek olarak verilmiş

Güneş kütlesi; astronomide diğer yıldızların, yıldız kümesinin, bulutsuların ve gök adaların kütlelerini belirtmede kullanılan, kütlesi yaklaşık 2×1030 kg olan standart bir kütle birimidir. Bu birim için Güneş kütlesi ölçek olarak düşünülmüştür. Yaklaşık iki nonilyon kilograma eşittir:

Bu kütle Dünya'nın kütlesinin 332.946 katı, Jüpiter kütlesinin ise 1.048 katıdır. Dünya'nın Güneş'in etrafında eliptik yörüngede dolanması sebebiyle, Dünya'nın hareketinden yola çıkılarak güneş kütlesi hesaplanabilir. Merkezi bir kütle etrafında dolanan küçük cisimler için yörünge süresi eşitliğinden yararlanarak bulunabilir. Bir yılın uzunluğuna dayanarak, Güneş ile Dünya arasındaki uzaklık (astronomik birim veya AB), kütleçekim sabiti (G) ve Güneş kütlesi aşağıdaki eşitlikle gösterilir:

Kütleçekim sabitinin değeri, Henry Cavendish tarafından 1798 yılında yapılan ölçümlerden sağlanarak elde edilmiştir. Onun bulduğu değer, modern yöntemlerle elde edilen değerden sadece %1 farklı idi. 1761 ve 1769 Venüs geçişi sırasında çok yüksek hassasiyetle Güneş'in ıraklık açısı hesaplanmıştır, 9″ değerindeki verimle (1976 değerini şimdiyle karşılaştırırsak 8.794148″). Eğer ıraklık açısının değerini biliyorsak, Güneş'in Dünya'ya olan uzaklığını geometrik olarak hesaplayabiliriz.

Güneş'in kütlesini ilk tahmin eden kişi Isaac Newton'dur. Principia adlı eserinde, Dünya'nın kütlesinin Güneş'in kütlesine oranının yaklaşık olarak 1/28,700 olduğunu tahmin etti. Daha sonra bulduğu değerin, 1 Astronomik Birim'i tahmin ederken kullandığı ıraklık açısının yanlış değerine dayandığını fark ediyor. Principia adlı eserinin 3. baskısında tahminini düzelterek, oranı 1/169,282 olarak veriyor. Güneş'in ıraklık açısının kesin değeri daha da küçüktür. Tahmini kütlelerin oranı 1/332,946'dır.

Astronomik birim ve kütleçekim sabiti yüksek hassasiyetle hesaplanmadan önce, bir ölçüm birimi olarak Güneş kütlesi kullanılırdı. Bunun nedeni, Güneş Sistemi'indeki başka bir gezegenin göreceli kütlesi veya ikili kütle sistemleri olan çift yıldızların toplam kütlesi Güneş kütlesi cinsiden direkt olarak hesaplanabiliyordu. Kepler'in 3. Yasası'nı kullanılarak, gezegenin ve yıldızın yörünge yarıçapı astronomik birimler cinsinde, yörünge periyodu ise yıl cinsinden bulunur.

Zaman geçtikçe Güneş'in kütlesi azaldı. Bu yaklaşık olarak eşit miktarlarda iki aşamada gerçekleşir. İlk olarak, Güneş'in merkezinde hidrojen nükleer füzyon ile helyuma dönüşür. Bu tepkime sonunda bir miktar kütle, gama ışını fotonları biçiminde enerjiye dönüşür. Sonunda bu enerjinin çoğu Güneş'ten uzağa yayılır. İkinci olarak, Güneş'in atmosferindeki yüksek enerjili fotonlar ve elektronlar güneş rüzgârı olarak dış uzaya fırlatılır.

Güneş'in Anakol yıldızı olduktan sonraki gerçek kütlesi kesin değildir. Eğer şimdikine oranlarsak Güneş'in ilk hali çok daha fazla kütle kaybediyordu. Doğduğu andaki kütlesinin yüzde 1 ila 7'sini kaybetmiş olabilir. Güneş, Asteroit ve Kuyruklu yıldız etkileri nedeniyle çok az bir kütle kazanır. Zaten Güneş Sistemi'nin toplam kütlesinin %99,86'sını Güneş oluşturur. O nedenle bu etkiler nedeniyle kazanılan kütle, dış uzaya fırlayan ve ışımayla kaybedilen kütle ile karşılaştırılamaz.

Bağlantılı birimler

Bir Güneş kütlesi, bağlantılı birimlere dönüştürülebilir:

Aynı zamanda, genel görelilikte kütleyi uzunluk ve zaman cinsinden ifade etmek için de sıklıkla kullanılır.

Ayrıca bakınız

Konuyla ilgili yayınlar

İlgili Araştırma Makaleleri

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Kahverengi cüce</span>

Kahverengi cüceler, ilk kez 1995 yılında keşfedilen, ne yıldız ne de gezegen kategorisine konabilen gök cisimleri. Ancak son yıllarda bazı gök bilimciler kütlelerinin büyüklüğüne ve buna bağlı olarak sıcaklıklarına ve buna da bağlı olarak renklerine göre O, B, A, F, G, K ve M olarak sıralanan geleneksel yıldız kategorilerine kahverengi cüceleri de T ve Y sınıfları olarak eklemektedir.

<span class="mw-page-title-main">Newton'un evrensel kütleçekim yasası</span> Fizik kanunu

Newton'un evrensel çekim yasası (klâsik mekaniğin bir parçasıdır) aşağıdaki gibi ifade edilir;

Her bir noktasal kütle diğer noktasal kütleyi, ikisini birleştiren bir çizgi doğrultusundaki bir kuvvet ile çeker. Bu kuvvet bu iki kütlenin çarpımıyla doğru orantılı, aralarındaki mesafenin karesi ile ters orantılıdır:

Burada:

  • F iki kütle arasındaki çekim kuvvetinin büyüklüğü,
  • G Evrensel çekim sabiti 6.67 × 10-11 N m2 kg-2,
  • m1 birinci kütlenin büyüklüğü,
  • m2 ikinci kütlenin büyüklüğü,
  • r ise iki kütle arasındaki mesafedir.
<span class="mw-page-title-main">Kütle çekimi sabiti</span> nesneler arasındaki yerçekimi kuvvetini kütleleri ve mesafeleriyle ilişkilendiren fiziksel sabit

Kütleçekim sabiti MKS sisteminde yaklaşık 6,67x10ˉ¹¹ değerine sahiptir ve de G harfi ile gösterilir.

<span class="mw-page-title-main">Kurtulma hızı</span> bir cismin kendisini bağlayan kütleçekim alanından kurtulak için varması gereken hız

Fizikte, kurtulma hızı kütleçekim alanındaki herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cismin kendisini etkileyen kütleçekim alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

Schwarzschild yarıçapı, her kütle ile ilişkilendirilen karakteristik bir yarıçaptır. Verilen bir kütle bu yarıçapa kadar sıkıştırılırsa bilinen hiçbir kuvvet onun uzay zaman tekilliğine çökmesini engelleyemez. Schwarzschild yarıçapı terimi fizikte ve astronomide özellikle de kütleçekim ve genel görelilik teorilerinde kullanılır.

<span class="mw-page-title-main">Kepler'in gezegensel hareket yasaları</span>

Kepler'in gezegensel hareket yasaları, Güneş Sisteminde bulunan gezegenlerin hareketlerini açıklayan üç matematiksel yasadır. Alman matematikçi ve astronom Johannes Kepler (1572-1630) tarafından keşfedilmişlerdir.

<span class="mw-page-title-main">Chandrasekhar limiti</span>

Chandrasekhar limiti, astrofizikte kararlı bir beyaz cücenin sahip olabileceği en büyük kütledir. Bu limiti ilk defa Wilhelm Anderson ve E. C. Stoner hesaplamış, ancak adını bu hesapları 1930 yılında daha hassas olarak yapan Subrahmanyan Chandrasekhar'dan almıştır.

Fizikte Planck kütlesi (mP), Planck birimleri olarak bilinen doğal birimler sisteminde kütle birimidir.

<span class="mw-page-title-main">Kütleçekimsel dalga</span>

Kütleçekimsel dalga veya kütleçekim dalgası (KÇD), fizikte uzayzaman eğriliğinde oluşan kırışıklık olup kaynağından dışarıya doğru bir dalga olarak yayılır. Albert Einstein tarafından 1915'te varlığı öngörülen bu dalgalar, Genel Relativite Teorisi'ne dayanarak kütleçekimsel ışıma şeklinde enerji naklederler. Tespit edilebilir kütleçekimsel dalga kaynakları, beyaz cüce, nötron yıldızı veya kara delik içeren çift yıldız sistemleri olabilir. Kütleçekimsel dalgaların varlığı, kendisiyle fiziksel etkileşimlerin yayılma hızını sınırlama kavramını getiren ve genel relativite ile ilgili Lorentz değişmezliğinin muhtemel bir sonucudur. Bu dalgaların, etkileşim hızını sonsuz olarak kabul eden Newton'un Çekim Teorisi'nde varlığı mümkün değildir.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

<span class="mw-page-title-main">Doppler spektroskopisi</span>

Doppler spektroskopisi gezegenin ana yıldızın spektrumunda Doppler kaymaları gözlem yoluyla radyal hız ölçümleri Güneş Sistemi dışındaki gezegenlerin ve kahverengi cücelerin bulunması için kullanılan dolaylı bir yöntemdir.

<span class="mw-page-title-main">Yörünge bölgesini temizleme</span> Bir gök cisminin gezegen olarak kabul edilmesi için gereken kriterlerden biri

"Yörünge bölgesini temizleme", bir gök cisminin yörüngesi etrafında kütleçekimsel olarak baskın hale gelmesini ve doğal uyduları ya da kütleçekimsel etkisi altında olanlar dışında, kendi boyutuna yakın başka hiçbir cismin yörüngesinde bulunmamasını tanımlar.

<span class="mw-page-title-main">Yörünge mekaniği</span>

Yörünge mekaniği veya astrodinamik, roketler ve diğer uzay araçlarının hareketini ilgilendiren pratik problemlere, balistik ve gök mekaniğinin uygulamasıdır. Bu nesnelerin hareketi genellikle Newton'un hareket kanunları ve Newton'un evrensel çekim yasası ile hesaplanır. Bu, uzay görevi tasarımı ve denetimi altında olan bir çekirdek disiplindir. Gök mekaniği; daha genel olarak yıldız sistemleri, gezegenler, uydular ve kuyruklu yıldızlar gibi kütle çekimi etkisinde bulunan yörünge sistemleri için geçerlidir. Yörünge mekaniği; uzay araçlarının yörüngelerine ait yörünge manevraları, yörünge düzlemi değişiklikleri ve gezegenler arası transferler gibi kavramlara odaklanır ve itici manevralar sonuçlarını tahmin etmek için görev planlamacıları tarafından kullanılır. Genel görelilik teorisi, yörüngeleri hesaplamak için Newton yasalarından daha kesin bir teoridir ve doğru hesaplar yapmak ya da yüksek yerçekimini ihtiva eden durumlar söz konusu olduğunda bazen gereklidir.

Standart kütleçekim parametresi astronomide kullanılan bir büyüklüktür.

<span class="mw-page-title-main">Çift merkezi</span>

Astronomide çift merkezi birbirinin yörüngesinde dönen iki veya daha fazla cismin kütle merkezidir ve cisimlerin etrafında döndüğü noktadır. Çift merkez fiziksel bir nesne değil, dinamik bir noktadır. Astronomi ve astrofizik gibi alanlarda önemli bir kavramdır. Bir cismin kütle merkezinden çift merkeze olan mesafesi iki cisim problemi olarak hesaplanabilir.

<span class="mw-page-title-main">Kütleçekimsel bağlanma enerjisi</span> Bir sistemi kütleçekimsel olarak bağlı durumdan çıkarmak için gereken minimum enerji

Bir sistemin kütleçekimsel bağlanma enerjisi, sistemin kütleçekimsel olarak bağlı durumunu kaybederek birbirinden tamamen ayrılması için kendisine eklenmesi gereken minimum enerjidir. Kütleçekimsel olarak bağlı bir sistem, tamamen ayrıldıklarında parçalarının enerjilerinin toplamından daha düşük bir kütleçekimsel potansiyel enerjiye sahiptir. Bu durum, sistemi minimum toplam potansiyel enerji ilkesine uygun olarak bir arada tutan şeydir.

Astronomide gezegensel kütle, gezegen benzeri astronomik cisimlerin kütlesinin bir ölçüsüdür. Güneş Sistemi içindeki gezegenler genellikle kütle biriminin Güneş'in kütlesi (M) olduğu astronomi birimler sisteminde ölçülür. Ötegezegenlerin incelenmesinde ise ölçü birimi olarak genellikle büyük gaz devleri için Jüpiter'in kütlesi (MJ) ve daha küçük kayalık karasal gezegenler için Dünya'nın kütlesi (M🜨) kullanılır.