İçeriğe atla

Gül (matematik)

7 yapraklı gül (k=7)
8 yapraklı gül (k=4)
Bazı rasyonel k değerlerine karşılık gelen güller (k=n/d)

Matematikte gül veya rodonea (Yunanca gül anlamına gelen rodon kelimesinden), kutupsal koordinat sisteminde çizilmiş bir sinüs ya da kosinüs eğrisine denir. Gül eğrisi, aşağıdaki kutupsal denklemle ifade edilir:

Bu denklemde kosinüs yerine sinüs de yazılabilir, ortaya çıkacak eğri kosinüs eğrisinin π/2k radyan kadar döndürülmüş bir kopyası olacaktır. Bunun sebebi de sinüs ve kosinüs arasındaki şu ilişkidir:

Gül eğrisi aynı zamanda, orijinden çıkan ve sabit açısal hızla dönmekte olan bir doğrunun üzerinde sinüs/kosinüs dalgası şeklinde ileri geri hareket eden bir noktanın izleyeceği eğridir.

Denklemdeki a değeri gülün şeklini değil, bir bütün olarak büyüklüğünü (yani yaprakların uzunluğunu) etkiler.

Eğer k bir tek sayı ise, gül şeklinin tamamen çizilmesi için θ'nın π uzunluğunda bir interval boyunca ilerlemesi yeterlidir ve ortaya çıkacak gül k yapraklı olacaktır. Yok eğer k bir çift sayı ise, şeklin tamamen çizilmesi için θ'nın 2π uzunluğunda bir intervalde ilerlemesi gerekir ve ortaya çıkacak gül 2k yapraklı olacaktır. Burada ilginç bir nokta şudur: Herhangi bir tek sayının iki katı kadar (2, 6, 10, 14, 18, vs.) yaprağı olan bir gül çizilemez.

Elbette k bir tam sayı olmak zorunda değildir, rasyonel ya da irrasyonel de olabilir. Eğer k bir rasyonel sayı ise, ortaya çıkan eğri topolojik anlamda kapalı ve sonlu uzunlukta olacaktır. k irrasyonel ise, eğri kapalı olmayacak ve uzunluğu sonsuz olacaktır.

Bu eğrilere gül ismini veren, 18. yüzyıl İtalyan matematikçisi Guido Grandi'dir.[1]

Alan

Eğer k bir çift sayı ise,

eşitliğiyle tanımlanan gülün alanı, şöyle hesaplanabilir:

Benzer şekilde, eğer k bir tek sayı ise, gülün alanı şu olacaktır:

Dikkat edilirse, alan formüllerinde k gözükmemektedir, yani güllerin alanları k'nın değerinden bağımsızdır. Ayrıca, çift yapraklı güllerin alanı, tek yapraklı güllerin alanının iki katıdır.

Kaynakça

  1. ^ ""Rhodonea Curves"" (İngilizce). 8 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Temmuz 2007. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Sinüs (matematik)</span>

Matematikte sinüs, trigonometrik bir fonksiyon. Sin kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Kardiyoit</span>

Matematikte kardiyoit veya yürek eğrisi, sabit bir çember üzerinde yuvarlanmakta olan aynı yarıçaplı ikinci bir çember üzerindeki herhangi bir noktanın izlediği eğridir. İsmi Yunanca kardia (kalp) ve eidos (şekil) kelimelerinin birleşiminden oluşur. Kalp (♥) şeklini anımsattığı için bu ismi almıştır. Kardiyoit ismini ilk kullanan, 18. yüzyıl İtalyan matematikçisi Johann Castillon olmuştur.

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

<span class="mw-page-title-main">Fresnel integrali</span>

Fresnel integrali, S(x) ve C(x), iki transendental fonksiyon'dur. Augustin-Jean Fresnel'e atfedilmiştir ve optikte kullanılmaktadır. Yakın alan Fresnel difraksiyon fenomeninde ortaya çıkar; aşağıdaki integral gösterimi ile tanımlanırlar:

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

<span class="mw-page-title-main">Euler spirali</span> düzlemsel eğri

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

Lambert kosinüs yasasına göre, optikte, ideal dağınık bir şekilde yansıtılan yüzeyden veya ideal dağınık bir ısıtıcıdan gözlemlenen radyant yoğunluğu veya parlaklık yoğunluğu, gözlemcinin görüş yeri ve yer arasında kalan teta açısı ile doğru orantılıdır. Bu yasa ‘kosinüs emisyon yasası’ ya da ‘Lambert emisyon yasası’ olarak da bilinmektedir. Ayrıca, bu yasa 1760 yılında Johann Heinrich Lambert'ın ‘Photometria’ adı kitabı yayınlandıktan sonra isimlendirilmiştir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.

<span class="mw-page-title-main">Episikloid</span> Matematikte bir yuvarlanma eğrisi

Geometride, bir episikloid, sabit bir çemberin etrafında kaymadan yuvarlanan bir çemberin çevresi üzerinde seçilen bir noktanın yolunu izleyerek üretilen bir düzlem eğrisidir -buna episikl (epicycle) denir. Bu, yuvarlanma eğrisinin özel bir türüdür.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

Matematikte, trigonometrik fonksiyonların değerleri gibi yaklaşık olarak veya gibi tam olarak ifade edilebilir. Trigonometrik tablolar birçok yaklaşık değer içerirken, belirli açılar için kesin değerler aritmetik işlemler ve karekök kombinasyonu ile ifade edilebilir. Bu şekilde ifade edilebilen trigonometrik değerlere sahip açılar tam olarak pergel ve düzeç ile inşa edilebilen açılardır ve bu değerlere inşa edilebilir sayılar denir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

<span class="mw-page-title-main">Trigonometrik yerine koyma</span> trigonometrik fonksiyonları içeren integrallerin hesaplanması için yöntem

Matematikte, bir trigonometrik yerine koyma veya trigonometrik ikame, trigonometrik fonksiyon yerine başka bir ifadeyi koyar. Kalkülüste trigonometrik ikameler integralleri hesaplamak için kullanılan bir tekniktir. Bu durumda, radikal fonksiyon içeren bir ifade trigonometrik bir ifade ile değiştirilir. Trigonometrik özdeşlikler cevabı basitleştirmeye yardımcı olabilir. Diğer yerine koyma yoluyla integrasyon yöntemlerinde olduğu gibi, belirli bir integrali değerlendirirken, integrasyon sınırlarını uygulamadan önce, ters türevin sonucunu tam olarak çıkarmak daha basit olabilir.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.

<span class="mw-page-title-main">Pisagor trigonometrik özdeşliği</span> sin² θ + cos² θ = 1

Pisagor trigonometrik özdeşliği, daha basit ifadeyle Pisagor özdeşliği olarak da adlandırılır, Pisagor teoremini trigonometrik fonksiyonlar cinsinden ifade eden bir özdeşliktir. Açıların toplam formülleri ile birlikte, sinüs ve kosinüs fonksiyonları arasındaki temel bağıntılardan biridir. Özdeşlik şu şekildedir: