Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.
Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.
Makine öğrenimi (ML), veriden öğrenebilen ve görünmeyen verilere genelleştirebilen ve dolayısıyla açık talimatlar olmadan görevleri yerine getirebilen istatistiksel algoritmaların geliştirilmesi ve incelenmesiyle ilgilenen, yapay zekâda akademik bir disiplindir. Makine öğrenimi, bilgisayarların deneyimlerinden öğrenerek karmaşık görevleri otomatikleştirmeyi sağlayan bir yapay zeka alanıdır. Bu, veri analizi yaparak örüntüler tespit etme ve tahminlerde bulunma yeteneğine dayanır. Son zamanlarda yapay sinir ağları, performans açısından önceki birçok yaklaşımı geride bırakmayı başardı.
Naïve Bayes sınıflandırıcı, örüntü tanıma problemine ilk bakışta oldukça kısıtlayıcı görülen bir önerme ile kullanılabilen olasılıksal bir yaklaşımdır. Bu önerme, örüntü tanımada kullanılacak her bir tanımlayıcı öznitelik ya da parametrenin istatistik açıdan bağımsız olması gerekliliğidir. Her ne kadar bu önerme Naive Bayes sınıflandırıcının kullanım alanını kısıtlasa da istatistik bağımsızlık koşulu esnetilerek kullanıldığında da daha karmaşık yapay sinir ağları gibi metotlarla karşılaştırabilir sonuçlar vermektedir. Bir Naive Bayes sınıflandırıcı, her özniteliğin birbirinden koşulsal bağımsız olduğu ve öğrenilmek istenen kavramın tüm bu özniteliklere koşulsal bağlı olduğu bir Bayes ağı olarak da düşünülebilir.
Granger nedensellik sınaması, bir zaman serisinin başka bir zaman serisini tahmininde kullanışlı olup olmadığının bir istatistiksel hipotez sınamasıdır. Normalde, bağlanımlar, "sadece" ilintileri yansıtırlar, ancak Ekonomi Nobel Ödülünü kazanan Clive Granger, belli bir sınamalar kümesinin nedensellikle ilgili bir şeyler ortaya çıkardığını savunmuştur.
Uyarlamalı ağ tabanlı bulanık çıkarım sistemi, Takagi-Sugeno bulanık çıkarım sistemine dayalı bir tür yapay sinir ağı yöntemi. Jang tarafından 1990’ların başlarında geliştirilmiş olup doğrusal olmayan fonksiyonların modellenmesinde ve kaotik zaman serilerinin tahmininde kullanılmıştır.
Öznitelik, makine öğrenmesi ve örüntü tanıma alanlarında, gözlemlenen bir olgunun ölçülebilir bir niteliğidir. Anlaşılır, ayırt edici ve bağımsız özellikler seçmek etkili örüntü tanıma, sınıflandırma ve regresyon algoritmaları için kritik bir adımdır. Özellikler genellikle sayısaldır ancak sentaktik örüntü analizinde kelimeler ve çizgeler de kullanılır.
Tümevarımlı mantık programlama (TMP) bilginin mantık programlama ile ifade edildiği bir makine öğrenmesi yöntemidir. Mantıksal olgulardan oluşan artalan bilgisi ve gözlemler kümesini içeren bir veritabanı verildiğinde, ILP sistemi tüm olumlu gözlemleri gerektiren ve olumsuz gözlemlerin hiçbirini gerektirmeyen bir hipotez üretir.
- Çerçeve: olumlu gözlemler + olumsuz gözlemler + artalan bilgisi ⇒ hipotez.
Bir Bayes ağı, Bayes modeli ya da olasılıksal yönlü dönüşsüz çizge modeli bir olasılıksal çizge modelidir ve birbirleriyle koşulsal bağımlılıklara sahip bir rassal değişkenler kümesini yönlü dönüşsüz çizge(YDÇ) şeklinde ifade eder. Bayes ağları; gündelik hayatta meydana gelen bir olayı anlatmak ve o olayın gerçekleşmesine sebebiyet verebileceği bilinen birkaç olası nedenden herhangi birinin katkıda bulunan faktör olma olasılığını tahmin etmek için kullanılan ideal bir modelleme türüdür. Örneğin, bir Bayes ağı kullanılarak hastalıklar ve semptomları arasındaki olasılıksal koşul ilişkileri modellenebilir. Bu model kullanılarak, bir kişide görülen semptomlar verildiğinde bu kişinin bazı hastalıklara sahip olma olasılıkları hesaplanabilir. Buna benzer olarak neden-sonuç ilişkisi olan birçok olayın olasılığı bu modelleme ile görselleştirilebilir.
Pekiştirmeli öğrenme, davranışçılıktan esinlenen, öznelerin bir ortamda en yüksek ödül miktarına ulaşabilmesi için hangi eylemleri yapması gerektiğiyle ilgilenen bir makine öğrenmesi yaklaşımıdır. Bu problem, genelliğinden ötürü oyun kuramı, kontrol kuramı, yöneylem araştırması, bilgi kuramı, benzetim tabanlı eniyileme ve istatistik gibi birçok diğer dalda da çalışılmaktadır.
Destek vektör makinesi, eğitim verilerindeki herhangi bir noktadan en uzak olan iki sınıf arasında bir karar sınırı bulan vektör uzayı tabanlı makine öğrenme yöntemi olarak tanımlanabilir.
Çarpraz doğrulama, yapılan bir istatistiksel analizin bağımsız bir veri setinde nasıl bir sonuç elde edeceğini sınayan bir model doğrulama tekniğidir. Başlıca kullanım alanı bir öngörü sisteminin pratikte hangi doğrulukla çalışacağını kestirmektir. Bir öngörü probleminde, model genellikle bir "bilinen veri" kümesiyle eğitilir ve bir "bilinmeyen veri" kümesiyle sınanır. Bu sınamanın amacı, eğitilen modelin yeni verilere genelleşme kabiliyetini ölçmek ve aşırı uyma ya da seçim yanlılığı problemlerini tespit etmektir.
Perceptron (Algılayıcı), tek katmanlı bir yapay sinir ağının temel birimidir. Eğitilebilecek tek bir yapay sinir hücresinden oluşmaktadır. Denetimli bir öğrenme algoritmasıdır. Bir perceptron giriş değerleri, ağırlıklar ve sapma, ağırlıklı toplam ve aktivasyon işlevi olmak üzere dört bölümden oluşmaktadır. Hem giriş hem de çıkış değerleri verilir ve sinir ağının öğrenmesi beklenir.
Makine öğreniminde, çoklu örnek öğrenme (ÇÖÖ) bir tür denetimli öğrenmedir. Öğrenci, bireysel olarak etiketlenmiş bir dizi örnek almak yerine, her biri birçok örnek içeren bir dizi etiketli paket alır.
Yapay zeka araştırmalarında sorunların, mantığın ve araştırmanın ileri düzey "sembolik" temsillerine dayanan tüm yöntemlerin toplanması için kullanılan terimdir. Sembolik YZ, 1950'lerin ortalarından 1980'lerin sonuna kadar YZ araştırmalarının baskın paradigmasıydı. 23 Mayıs 2021 tarihinde Wayback Machine sitesinde arşivlendi. 23 Mayıs 2021 tarihinde Wayback Machine sitesinde arşivlendi.
Çekişmeli üretici ağ, Ian Goodfellow ve meslektaşları tarafından 2014 yılında tasarlanan bir makine öğrenimi framework sınıfıdır. Bir oyunda iki sinir ağı birbiriyle yarışmaktadır.
Veri analizinde, anomali tespiti, verilerin çoğunluğundan önemli ölçüde farklılaşarak şüphe uyandıran nadir öğelerin, olayların veya gözlemlerin tanımlanmasıdır. Tipik olarak anormal öğeler, banka dolandırıcılığı, yapısal bir kusur, tıbbi sorunlar veya bir metindeki hatalar gibi bir tür soruna dönüşecektir. Anormallikler ayrıca aykırı değerler, yenilikler, gürültü, sapmalar ve istisnalar olarak da adlandırılmaktadır.
Yinelemeli sinir ağı, düğümler arası bağların zamansal bir dizi doğrultusunda yönlü çizge oluşturduğu bir yapay sinir ağı çeşididir. Yaygın olarak İngilizce kısaltması olan RNN olarak anılır. İleri beslemeli sinir ağından türetilen RNN yöntemi, bir iç durum belleği kullanarak değişik uzunluktaki dizileri işleyebilir. Bu sayede yazı tanıma ve konuşma tanıma gibi problemlere uygulanabilir. Teorik olarak Turing makinesine denk (Turing-complete) olan yinelemeli sinir ağları, herhangi uzunluktaki bir girdiyi işleyebilen herhangi bir programı çalıştırabilir.
Otomatik makine öğrenimi (AutoML), makine öğrenimini gerçek dünya sorunlarına uygulanmasını otomatikleştirme sürecidir.
Yapay sinir ağındaki bir nöronun aktivasyon fonksiyonu, nöronun girdilerinden gelen değerlerin toplamını kullanarak nöronun çıktısını hesaplamaya yardımcı olan matematiksel fonksiyondur. Aktivasyon fonksiyonu doğrusal olmadığı sürece, sadece birkaç nöron kullanılarak bile karmaşık problemler çözülebilir.