İçeriğe atla

Görüntü momenti

Görüntü işleme, bilgisayarla görme ve ilgili alanlarda, bir görüntü momenti, görüntü piksellerinin yoğunluklarının belirli bir ağırlıklı ortalaması (momenti) veya genellikle çekici bir özelliğe veya yoruma sahip olmak üzere seçilen bu tür momentlerin bir fonksiyonudur.

Görüntü momentleri, segmentasyondan sonra nesneleri tanımlamak için daha kullanışlıdır. Görüntü momentleri aracılığıyla bulunan görüntünün basit özellikleri, alanı (veya toplam yoğunluğu), ağırlık merkezini ve yönelimi hakkındaki bilgileri içermektedir.

Ham momentler

2B sürekli bir fonksiyon f(x,y) için (p+q) mertebesinin momenti (bazen "ham moment" olarak adlandırılır) şu şekilde tanımlanmaktadır:

p,q = 0,1,2,... için piksel yoğunlukları I(x,y) olan skaler (gri tonlamalı) görüntüye uyarlayarak, ham görüntü momentleri Mij şu şekilde hesaplanmaktadır:

Bazı durumlarda bu, görüntüyü bir olasılık yoğunluk fonksiyonu olarak ele alarak hesaplanmaktadır. Örnek olarak yukarıdakileri bölerek hesaplanabilir.

Bir teklik teoremi (Hu [1962]), f(x,y) parçalı sürekli ise ve xy düzleminin yalnızca sonlu bir bölümünde, sıfır olmayan değerlere sahipse, tüm derecelerin momentlerinin ve moment dizisinin (Mpq) olduğunu belirtmektedir. f(x,y) ile benzersiz bir şekilde belirlenmektedir. Bunun aksine, (Mpq) benzersiz olarak f(x,y)'yi belirlemektedit. Pratikte görüntü, birkaç alt sıralı momentin işlevleriyle özetlenmektedir.

Örnekler

Ham anlar yoluyla elde edilen basit görüntü özellikleri şunları içermektedir:

  • Alan (ikili görüntüler için) veya gri düzeyin toplamı (gri tonlu görüntüler için):
  • Merkez:

Merkezi momentler

Merkezi momentler şu şekiilde tanımlanmaktadır.

burada ve merkezin bileşenleridir.

Eğerƒ(xy) dijital görüntü ise, önceki denklem şu şekilde düzenlenmektedir:

3'e kadar olan durumun merkezi momentleri:

Şunlar gösterilebilir:

Merkezi momentler öteleme değişmezidir.

Örnekler

Görüntü yönelimi hakkında bilgi, bir kovaryans matrisi oluşturmak için ilk olarak ikinci dereceden merkezi momentler kullanılarak elde edilmektedir.

I(x,x) görüntüsünün kovaryans matrisi ;

.

Bu matrisin özvektörleri, görüntü yoğunluğunun ana ve küçük eksenlerine karşılık gelmektedir. Bu nedenle yönlendirme, en büyük özdeğer ile ilişkili özvektörün bu özvektöre en yakın eksene doğru açısından çıkarılmaktadır. Bu açının "Θ" aşağıdaki formül ile bulunmaktadır:

Yukarıdaki formül şu sürece geçerlidir:

Kovaryans matrisinin özdeğerleri kolaylıkla şu şekilde gösterilmektedir:

ve özvektör eksenlerinin kare uzunluğunun karesiyle orantılıdır. Özdeğerlerin büyüklüğündeki nispi fark, bu nedenle, görüntünün eksantrikliğinin veya ne kadar uzun olduğunun bir göstergesidir. Eksantriklik ise;

şekilnde gösterilmektedir.

Moment değişmezleri

Momentler, belirli dönüşüm sınıflarına göre değişmezleri türetmek için kullanılabildiklerinden, görüntü analizindeki uygulamalarıyla iyi bilinmektedir.

Değişmez momentler terimi bu bağlamda sıklıkla kötüye kullanılmaktadır. Bununla birlikte, değişmez olan tek moment merkezi momentltir.

Aşağıda ayrıntıları verilen değişmezlerin yalnızca sürekli etki alanında tam olarak değişmez olduğuna dikkat edilmektedir. Ayrık bir alanda, ne ölçekleme ne de döndürme iyi tanımlanmıştır. Bu şekilde dönüştürülmüş ayrı bir görüntü genellikle bir yaklaşıklıktır. Ayrıca, dönüşüm geri döndürülemez. Bu değişmezler, bu nedenle, ayrı bir görüntüdeki bir şekli tanımlarken yalnızca yaklaşık olarak değişmezdir.

Çeviri değişmezleri

Herhangi bir düzenin merkezi momentleri μi j, yapım gereği, ötelemelere göre değişmezdir.

Ölçek değişmezleri

Hem öteleme hem de ölçeğe göre ηi j değişmezleri, düzgün ölçeklendirilmiş sıfırıncı merkezi momente bölünerek merkezi momentlerden oluşturulmaktadır:

burada i + j ≥ 2 olmalıdır. Translasyonel değişmezliğin yalnızca merkezi momentleri kullanarak doğrudan takip ettiği unutulmamalıdır.

Dönme değişmezleri

Hu'nun çalışmasında gösterildiği gibi, öteleme,[1][2] ölçek ve döndürme ile ilgili değişmezler oluşturulmaktadır:

Bunlar Hu moment değişmezleri olarak bilinmektedir.

İlki, I1, piksellerin yoğunluğunun fiziksel yoğunluğa benzer olduğu, görüntünün merkezi etrafındaki atalet momentine benzemektedir. İlk altı, I1 ... I6, yansıma simetriktir. Yani görüntü ayna görüntüsüne dönüştürülürse değişmez. Sonuncusu, I7, yansıma antisimetriktir. Aksi takdirde özdeş görüntülerin ayna görüntülerini ayırt etmesini sağlamaktadır.

J. Flusser[3] tarafından tam ve bağımsız dönme momenti değişmezleri türetilmesi üzerine genel bir teori öretilmiştir. Geleneksel Hu moment değişmezlerinin ne bağımsız ne de tam olduğunu göstermiştir. I3, diğerlerine bağlı olduğu için pek kullanışlı değildir. Orijinal Hu kümesinde eksik bir üçüncü dereceden bağımsız moment değişmezi vardır:

I7 gibi, I8 de yansıma antisimetriktir.

Daha sonra, J. Flusser ve T. Suk,[4] N-dönmeli simetrik şekiller için teoriyi geliştirmişlerdir.

Uygulamalar

Zhang ve diğer çalışanlar, Patolojik Beyin Tespiti (PBD) problemini çözmek için Hu moment değişmezlerini uygulamışlardır.[5] Doerr ve Florence, mikro X-ışını tomografi görüntü verilerinden öteleme ve dönme ile değişmeyen nesne kesitlerini etkin bir şekilde çıkarmak için ikinci dereceden merkezi momentlerle ilgili nesne yönelimi bilgilerini kullanmışlardır.[6]

Dış bağlantılar

Kaynakça

  1. ^ M. K. Hu, "Visual Pattern Recognition by Moment Invariants", IRE Trans. Info. Theory, vol. IT-8, pp.179–187, 1962
  2. ^ http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=cvmatchshapes#humoments 24 Şubat 2014 tarihinde Wayback Machine sitesinde arşivlendi. Hu Moments' OpenCV method
  3. ^ J. Flusser: "On the Independence of Rotation Moment Invariants 22 Aralık 2018 tarihinde Wayback Machine sitesinde arşivlendi.", Pattern Recognition, vol. 33, pp. 1405–1410, 2000.
  4. ^ J. Flusser and T. Suk, "Rotation Moment Invariants for Recognition of Symmetric Objects 14 Temmuz 2020 tarihinde Wayback Machine sitesinde arşivlendi.", IEEE Trans. Image Proc., vol. 15, pp. 3784–3790, 2006.
  5. ^ Zhang, Yudong; Wang, Shuihua; Sun, Ping; Phillips, Preetha (1 Ocak 2015). "Pathological brain detection based on wavelet entropy and Hu moment invariants". Bio-Medical Materials and Engineering (İngilizce). 26 (s1): S1283-S1290. doi:10.3233/BME-151426. ISSN 0959-2989. 9 Temmuz 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Temmuz 2021. 
  6. ^ "A micro-XRT image analysis and machine learning methodology for the characterisation of multi-particulate capsule formulations". International Journal of Pharmaceutics: X (İngilizce). 2: 100041. 1 Aralık 2020. doi:10.1016/j.ijpx.2020.100041. ISSN 2590-1567. PMC 6997304 $2. PMID 32025658. 9 Temmuz 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Temmuz 2021. 

İlgili Araştırma Makaleleri

Fizikte moment, fiziksel niceliğin mesafe ile bileşimidir. Momentler, genellikle sabit bir referans noktasına ya da eksene göre tanımlanırlar, ilgili referans noktasından ya da ekseninden belirli bir mesafede ölçülen fiziksel nicelikleri ele alırlar. Mesela bir kuvvetin momenti, o kuvvetin kendisinin ve bir eksenden uzaklığının çarpımıdır ve ilgili eksenin etrafında dönmeye sebep olur. Prensip olarak herhangi bir fiziksel nicelik, moment oluşturmak üzere bir mesafe ile bileşebilir. Sıkça kullanılan nicelikler içinde kuvvetler, kütleler ve elektrik yük dağılımları bulunmaktadır.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Dalga denklemi</span> kısmi diferansiyel bir denklem

Dalga denklemi fizikte çok önemli yere sahip bir kısmi diferansiyel denklemdir. Bu denklemin çözümlerinden, ses, ışık ve su dalgalarının hareketlerini betimleyen fiziksel nicelikler çıkar. Kullanım alanı, akustik, akışkanlar mekaniği ve elektromanyetikte oldukça fazladır. Genellikle elektromanyetik dalgalar gibi dalgalar için dalga denkleminin vektörel formülasyonu kullanılır. Bu formülasyonda elektrik alanları şeklindeki vektörlerle gösterebilir ve vektörün her bi bileşeni skaler dalga denklemine uymak zorundadır. Yani vektörel dalga denklemleri çözülürken her bir bileşen ayrı ayrı çözülür. Denklemin en basit hali aşağıdaki şekliyle gösterilir,

D'Alembert işlemcisi, özel görelilikte, elektromanyetizmada ve dalga kuramında; Minkowski uzayını ve Einstein alan denklemlerinin diğer çözümlerini sağlayan Laplace işlemcisine d'Alembert işlemcisi veya dalga işlemcisi denir.

Fizikte ve matematikte, matematikçi Hermann Minkowski anısına adlandırılan Minkowski uzayı veya Minkowski uzayzamanı, Einstein'ın özel görelilik kuramının en uygun biçimde gösterimlendiği matematiksel yapıdır. Bu yapıda, bilinen üç uzay boyutu tek bir zaman boyutuyla birleştirilerek, uzay zamanını betimlemek için dört boyutlu bir çokkatlı oluşturulmuştur.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Log-normal dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan ab ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

Olasılık kuramı ve istatistik bilimsel dallarında bir reel-değerli rassal değişken için k-ıncı ortalama etrafındaki moment, E beklenen değer operatörü olursa

μk := E[(X - E[X])k]

İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken Xin μ = E(X) olarak ifade edilen beklenen değeri ve σ² = E((X - μ)²) olarak ifade edilen varyansı bulunur. Bunlar ilk iki kümülant olarak belirlenirler; yani

κ1 = μ ve κ² = σ².

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

<span class="mw-page-title-main">Dirichlet eta işlevi</span>

Matematiğin analitik sayı kuramı alanında Dirichlet eta işlevi

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

Fizikte ve matematik'te, Poincaré grubu,Henri Poincaré adına ithaf edilmiştir,Minkowski uzayzaman'ın izometri grubu'dur ."Uzay ve zaman"ı İlk kez Minkowski 1908'de derste kullanılmıştır.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi:

Matematikte Stolarsky ortalaması, logaritmik ortalamanın bir genelleştirmesidir. 1975 yılında Kenneth B. Stolarsky tarafından ortaya atılmıştır.