İçeriğe atla

Görünmezlik

Görünmezlik, bir nesnenin görülememe durumudur. Bu durumdaki bir nesnenin görünmez olduğu söylenir. Terim genellikle nesnelerin büyülü veya teknolojik yollarla görülemediği fantezi / bilimkurgularında kullanılır; ancak etkileri gerçek dünyada, özellikle fizik ve algısal psikoloji derslerinde de gösterilebilir.

Nesneler, yüzeylerini yansıtan ve izleyicinin gözüne çarpan bir kaynaktan görünen spektrumdaki ışıkla görülebildiğinden, en doğal görünmezlik biçimi (gerçek veya kurgusal olsun) ışığı yansıtmayan veya emmeyen bir nesnedir (yani, ışığın içinden geçmesine izin verir). Bu şeffaflık olarak bilinir ve birçok doğal olarak oluşan malzemede görülür (doğal olarak oluşan hiçbir malzeme% 100 şeffaf olmasa da).

Görünmezlik algısı çeşitli optik ve görsel faktörlere bağlıdır.[1] Örneğin, görünmezlik gözlemcinin gözlerine ve / veya kullanılan araçlara bağlıdır. Böylece bir nesne, bir kişi, hayvan, alet vb. İçin "görünmez" olarak sınıflandırılabilir. Duyusal algı üzerine yapılan araştırmalarda görünmezliğin döngüsel olarak algılandığı gösterilmiştir.[2]

Görünmezlik çoğu zaman kamuflajın en üst biçimi olarak kabul edilir, çünkü izleyiciye herhangi bir hayati işaret, görsel efekt veya insan gözüyle algılanabilen elektromanyetik spektrumun herhangi bir frekansını göstermez. Radyo, kızılötesi veya ultraviyole dalga boylarını kullanır.

İllüzyon optiklerinde görünmezlik, illüzyon etkilerinin özel bir örneğidir: boş alan illüzyonu.

Pratik çabalar

  • Giyilebilir bir ekranda görüntülenen gerçek zamanlı bir görüntüyü kullanarak, bir şeffaf efekt oluşturmak mümkündür. Bu aktif kamuflaj olarak bilinir.
  • Gizli teknolojinin radar için görünmez olduğu bildirilmesine rağmen, sadece teknolojinin resmi olarak açıklanan tüm uygulamaları radar tarafından algılanan imzanın boyutunu ve / veya netliğini azaltabilir.
  • 2003 yılında Şilili bilim insanı Gunther Uhlmann görünmez materyaller yaratan ilk matematiksel denklemleri önermektedir.[3]
  • 2006: İngiltere ve ABD'den araştırmacıların bir ekip çalışması, sadece ilk aşamalarında olmasına rağmen, gerçek bir görünmezlik pelerini geliştirdiğini açıkladı.[4]
  • Film yapımında insanlar, nesneler veya arka planlar, chroma keying olarak bilinen bir işlemle kamerada görünmez görünebilir.
  • Mikrodalga spektrumunda görünmez olan yapay olarak yapılmış bir meta malzeme.

Mühendisler ve bilim adamları, nesneler için(ör. pelerinler) gerçek optik görünmezlik yaratmanın yollarını bulma olasılığınını araştırmak için çeşitli gözlemler yaptılar. Yöntemler tipik olarak, birkaç gizleme teorisine yol açan dönüşüm optiklerinin teorik tekniklerinin uygulanmasına dayanıyor.

Şu anda pratik bir gizleme cihazı mevcut değildir.[5][6] 2006 teorik çalışması kusurların küçük olduğunu ve metamalzemelerin gerçek hayattaki "gizleme cihazlarını" pratik hale getirebileceğini öngörmektedir.[7][8] Tekniğin beş yıl içinde radyo dalgalarına uygulanacağı tahmin edilmektedir ve görünür ışığın bozulması nihai bir olasılıktır. Işık dalgalarının radyo dalgalarıyla aynı şekilde hareket edebileceği teorisi bilim adamları arasında popüler bir fikirdir.

İki bilim insanı ekibi, nano ölçekli düzeyde tasarlanan metamalzemelerden iki "görünmezlik pelerini" oluşturmak için ayrı ayrı çalıştı. İlk kez üç boyutlu (3 boyutlu) nesneleri, bir nesnenin etrafındaki radarı, ışığı veya diğer dalgaları yönlendiren yapay olarak üretilmiş malzemelerle gizleme olasılığını gösterdiler. Biri ışığın yönünü tersine çevirmek için bir tür metal katmanlar ağı kullanırken diğeri küçük gümüş teller kullandı. California Üniversitesi'nden Xiang Zhang, Berkeley şunları söyledi: "Görünmezlik pelerinleri veya kalkanları söz konusu olduğunda, malzemenin bir kaya etrafında akan bir nehir gibi ışık dalgalarını nesnenin etrafına tamamen eğmesi gerekecektir. Gizlenmiş nesneye bakan bir gözlemci daha sonra arkasından gelen ışığı görür ve ortadan kaybolmuş gibi görünür. "

UC Berkeley araştırmacısı Jason Valentine ekibi, fiber optikte kullanılan bir bölgede, görünür spektrumun yakınındaki ışığı etkileyen bir malzeme yaptı. Bu tuhaftı. Bir meta malzemenin negatif kırılma üretmesi için, kullanılan elektromanyetik radyasyonun dalga boyundan daha küçük bir yapısal diziye sahip olması gerekir. " Sevgililer ekibi, gümüş ve metal dielektrik katmanları üst üste istifleyerek ve ardından delikler açarak 'file' malzemelerini yarattı. Diğer ekip bir oksit şablonu kullandı ve gözenekli alüminyum oksidin içinde, görünür ışığın dalga boyundan daha küçük olan uzak mesafelerde gümüş nanoteller yetiştirdi. Bu malzeme görünür ışığı kırıyordu.

Imperial College London araştırma ekibi mikrodalgalarla sonuç elde etti. Bakır bir silindirin görünmezlik pelerin düzeni Mayıs 2008'de fizikçi Profesör Sir John Pendry tarafından üretildi. ABD'deki Duke Üniversitesi'nde onunla birlikte çalışan bilim adamları bu fikri hayata geçirdi.[9][10]

Görünmezlik pelerini metamalzemelerin potansiyelini göstermek için "şaka olarak" teorileştiren Pendry, Ağustos 2011'de yaptığı bir röportajda, fikrinin büyük, teatral tezahürlerinin muhtemelen abartılı olduğunu söyledi: "Sanırım Harry Potter'ın tanıyacağı herhangi bir pelerin masada değil. Bazı teorileri hayal edebilirsiniz, ancak bunu yapmanın pratikliği çok imkansız olurdu. Ama bir şeyleri ışıktan gizleyebilir misin? Evet. Birkaç santimetre boyunca olan şeyleri saklayabilir misin? Evet. Pelerin gerçekten esnek mi? Hayır. Hiç olacak mı? Hayır. Yani pek çok şey yapabilirsiniz, ancak sınırlamalar vardır. Etrafında bazı hayal kırıklığına uğramış çocuklar olacak, ancak endüstride buna minnettar olan birkaç kişi olabilir."[11]

2009 yılında Türkiye'de Bilkent Üniversitesi Nanoteknoloji Arama Merkezi, yeni fizik dergisi tarafından nanoteknoloji materyali üreterek mükemmel şeffaf sahnenin yanında nanoteknolojiyi gölgesiz görünmez yapan bir nesneyi kullanarak uygulamada görünmezliği gerçeğe dönüştürmeyi başardıklarını açıkladı. Ayrıca bu nanoteknoloji maddesi herkesin giyebileceği bir elbise gibi de üretilebilir.

2019'da Hyperstealth Biotechnology, insanları ve nesneleri çıplak gözle görünmez hale getirmek için ışık büken bir malzemenin arkasındaki teknolojiyi patentledi. Quantum Stealth olarak adlandırılan malzeme şu anda prototip aşamasındadır ve şirketin CEO'su Guy Cramer tarafından öncelikle askeri amaçlar için, sahada tanklar ve jetler gibi ajanları ve ekipmanları gizlemek için geliştirilmiştir. Cramer'e göre, ormanlar veya çöller gibi özel koşullarla sınırlı geleneksel kamuflaj malzemelerinin aksine, bu "görünmezlik pelerini" günün herhangi bir saatinde herhangi bir ortamda veya mevsimde çalışır.[12]

Kaynakça

  1. ^ Moreno (2014). "Invisibility assessment: a visual perception approach" (PDF). Journal of the Optical Society of America A. 31 (10). ss. 2244-2248. 8 Ağustos 2017 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 24 Ocak 2016. 
  2. ^ Craig (1953). "Visibility-Invisibility Cycles as a Function of Stimulus-Orientation". The American Journal of Psychology. 66 (4). ss. 554-563. 
  3. ^ "Un genio invisible" [An invisible genius]. Qué Pasa (İspanyolca). 21 Mart 2013. 24 Ekim 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Nisan 2020. 
  4. ^ "Cloak of invisibility: Fact or fiction?". NBC News. 29 Mart 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Nisan 2020. 
  5. ^ Nachman (Kasım 1988). "Reconstructions From Boundary Measurements". Annals of Mathematics. 128 (3). ss. 531-576. 
  6. ^ Wolf (Mayıs 1993). "Invisible Bodies and Uniqueness of the Inverse Scattering Problem". Journal of Modern Optics. 40 (5). ss. 785-792. 
  7. ^ Pendry (Haziran 2006). "Controlling Electromagnetic Fields". Science. 312 (5781). ss. 1780-1782. 
  8. ^ Leonhardt (Haziran 2006). "Optical Conformal Mapping". Science. 312 (5781). ss. 1777-1780. 
  9. ^ "Scientists Turn Fiction Into Reality, Closer to Make Objects "Invisible"". themoneytimes.com. 16 Ağustos 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Nisan 2020. 
  10. ^ "Secrets of invisibility discovered". mirror.co.uk. 14 Ağustos 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Nisan 2020. 
  11. ^ John Pendry (18 Ekim 2011). "video: The birth and promise of metamaterials". SPIE. 15 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Nisan 2020. 
  12. ^ "Hyperstealth Biotechnology's "invisibility cloak" can conceal people and buildings". Dezeen (İngilizce). 7 Kasım 2019. 7 Kasım 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Kasım 2019. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Optik</span> fizik biliminin bir alt dalı

Optik, ışık hareketlerini, özelliklerini, ışığın diğer maddelerle etkileşimini inceleyen; fiziğin ışığın ölçümünü ve sınıflandırması ile uğraşan bir alt dalı. Optik, genellikle gözle görülebilen ışık dalgalarının ve gözle görülemeyen morötesi ve kızılötesi ışık dalgalarının hareketini inceler. Çünkü ışık bir elektromanyetik dalgadır ve diğer elektromanyetik dalga türleri ile benzer özellikler gösterir.

<span class="mw-page-title-main">Işık</span> elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon

Işık veya görünür ışık, elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon. Görünür ışık genellikle 400-700 nanometre (nm) aralığında ya da kızılötesi ve morötesi arasında 4.00 × 10−7 ile 7.00 × 10−7 m dalga boyları olarak tanımlanır. Bu dalga boyu yaklaşık 430-750 terahertz (THz) frekans aralığı anlamına gelir.

<span class="mw-page-title-main">Pigment</span>

Pigment ya da boyar madde, suda tamamen veya hemen hemen çözünmeyen renkli bir malzemedir. Bunun tersine, boyalar genelde, en azından kullanımlarının bir aşamasında çözünürdür. Boyalar genellikle organik bileşik pigmentler ise genellikle inorganik bileşikdir. Tarih öncesi ve tarihi değeri olan pigmentler arasında koyu sarı, odun kömürü ve lapis lazuli bulunur. Sanayide olduğu kadar sanatta da kalıcılık ve istikrar istenen özelliklerdir. Kalıcı olmayan pigmentler kaçak olarak adlandırılır. Kaçak pigmentler zamanla veya ışığa maruz kaldıkça solarken bazıları sonunda kararır. Pigmentler boya, mürekkep, plastik, kumaş, kozmetik, gıda ve diğer malzemeleri renklendirmede kullanılır. İmalat ve görsel sanatlarda kullanılan çoğu pigment kuru renklendiricidir ve genellikle ince bir toz hâlinde öğütülür. Boyada kullanım için bu toz, pigmenti askıya alan görece nötr veya renksiz bir malzeme olan bağlayıcıya eklenir ve boyaya yapışkanlık verir. Genellikle aracında çözünmez olan bir pigment ile kendisi bir sıvı olan veya aracında çözünen boya arasında bir ayrım yapılır. Renklendirici, ilgili araca bağlı olarak bir pigment veya bir boya görevi görebilir. Bazı durumlarda pigment, bir metalik tuzla çözülebilir bir boyanın çökeltmesi ile boyadan üretilebilir. Oluşan pigmente göl pigmenti denir. Biyolojik pigment terimi, çözünürlüklerinden bağımsız olarak tüm renkli maddeler için kullanılır.

<span class="mw-page-title-main">Spektroskopi</span>

Spektroskopi elektromanyetik radyasyon ile maddenin etkileşiminin radyasyonun dalga boyu veya frekansının bir fonksiyonu olarak ortaya çıkan elektromanyetik spektrumu (tayf) ölçen ve yorumlayan bir çalışma alanıdır. Başka bir deyişle, elektromanyetik spektrumun tüm bantlarında görünür ışıktan kaynaklı olarak meydana gelen bir kesin renk çalışmasıdır.

<span class="mw-page-title-main">Görünmezlik pelerini</span>

Görünmezlik pelerini, çeşitli bilimkurgu eserlerinde ve filmlerinde karşılaşılan futuristik bir tema ve günümüzde bilimadamları tarafından üzerinde çalışılan gerçek bir konudur.

<span class="mw-page-title-main">Polarizasyon</span>

Polarizasyon dalganın hareket yönüne dik gelen düzlemdeki salınımların yönünü tanımlayan yansıyan dalgaların bir özelliğidir. Bu kavram dalga yayılımı ile ilgilenen optik, deprembilim ve uziletişim gibi bilim ve teknoloji sahalarında kullanılmaktadır. Elektrodinamikte polarizasyon, ışık gibi elektromanyetik dalgaların elektrik alanının yönünü belirten özelliğini ifade eder. Sıvılarda ve gazlarda ses dalgaları gibi boyuna dalgalar polarizasyon özelliği göstermez çünkü bu dalgaların salınım yönü uzunlamasınadır yani yönü dalganın hareketinin yönü tarafından belirlenmektedir. Tersine elektromanyetik dalgalarda salınımın yönü sadece yayılımın yönü ile belirlenmemektedir. Benzer şekilde katı bir maddede yansıyan ses dalgasında paralel stres yayılım yönüne dik gelen bir düzlemde her türlü yönlendirmeye tabi olabilir.

<span class="mw-page-title-main">Fotodiyot</span> p-n bağlantısına dayalı fotodetektör türü

Fotodiyot, görünür ışık, kızılötesi veya ultraviyole radyasyon, X ışınları ve gama ışınları gibi foton radyasyonuna duyarlı bir yarı iletken diyottur. Fotodiyot, fotonları emdiğinde akım veya voltaj Fotovoltaikleri üreten bir PN yarı iletken malzemedir.Semiconductor Optoelectronics .

<span class="mw-page-title-main">Mavi</span> bir renk

Mavi, çakır veya gök, resim boyamada ve geleneksel renk teorisi ve RGB renk modelindeki üç ana renkler pigmentlerinden biridir. Görünür ışığın tayfı üzerinde menekşe ve yeşil arasında uzanır. Göz yaklaşık 450 ile 495 nanometre arasında baskın dalga boyu olan ışığı gözlemlerken maviyi algılar. Çoğu mavi, diğer renklerin hafif bir karışımını içerir; gök mavisi biraz yeşil içerirken lacivert biraz menekşe içerir. Açık gündüz gökyüzü ve derin deniz Rayleigh saçılması olarak bilinen optik bir etki nedeniyle mavi görünür. Tyndall etkisi adı verilen bir optik etki, mavi gözler 'i açıklar. Havadan perspektif adı verilen başka bir optik etki nedeniyle uzaktaki nesneler daha mavi görünür. Karşıt rengi turuncu'dur.

<span class="mw-page-title-main">Perdeleme teorileri</span>

Pelerinleme teorileri bilim ve araştırma üzerine dayalı bir elektromanyetik görünmezlik pelerini yaratma fikrine dayanır. Şu andaki çeşitleri arasında metamalzeme pelerinleme, olay pelerinleme, dipolar saçılma iptali, ışık tünelleme iletimi, sensörler ve aktif kaynaklar ve akustik metamalzemeler yer alır.

<span class="mw-page-title-main">Optik illüzyon</span>

Optik illüzyon ya da göz yanılsaması, görsel olarak algılanan görüntüler ile nesnel gerçekliğin farklı olduğu durumlar için kullanılan terimdir. Göz tarafından toplanan ve beyinde işlenen bilgiler uyaran kaynağının fiziksel ölçümü ile uyuşmayan bir algı oluşturur. Temel olarak 3 tipi vardır: Değişmez optik illüzyonlar ile temsil ettiği nesnelerden farklı algılanan görüntüler oluşturulur, fizyolojik optik illüzyonlar gözlerin ve beynin belirli bir tür aşırı uyarılması ile etki gösterir ve bilişsel illüzyonlar, bilinçsiz çıkarımlar sonucu oluşur.

Fotometri bir astronomik nesnenin ışık akısı veya elektromanyetik radyasyonunun yoğunluğunun ölçülmesi ile ilgili bir astronomi tekniğidir.

Terahertz metamalzemeleri birleşimin yeni bir sınıflandırılma biçimidir. Suni malzemeler hala terahertz (THz) frekanslarıyla etkileşimde olan gelişim süreci altındadır. Terahertz frekansları malzeme araştırmalarında sık sık 0.1'den 10 terahertz frekansına kadar kullanılmaktadırlar.

<span class="mw-page-title-main">Optik saydamlık ve yarı saydamlık</span>

Fiziğin optik alanında, geçirgenlik ışığın bir materyal üzerinden dağılmadan geçebilmesine olanak sağlayan fiziksel bir özelliktir. Makroskopik (büyük) ölçeklerde, fotonların Snell kanununa göre hareket ettikleri söylenebilir. Yarı saydamlık, geçirgenliğin içinde bulunan bir üst kümedir ve ışığın geçmesine izin verir ancak Snell kanununu takip etmek zorunda değildir. Fotonlar, kırınım işaretleri içinde herhangi bir değişim meydana geldiğinde her iki arayüzde de dağınım gösterebilirler. Diğer bir deyişle, yarı saydam bir ortam ışığın ulaşım yapmasına olanak sağlarken saydam olan bir ortam sadece ışığın geçişini onaylamakla kalmaz aynı zamanda görüntü oluşumuna da izin verir. Yarı saydamlığın karşıtı olan kavram opaklıktır. Saydam yani geçirgen olan maddeler oldukça net görülen, tamamının tek bir renge sahip olduğu ya da her rengi içeren bir spekturumu meydana getiren herhangi bir kombinasyona sahip olabilir.

Süperlenskırınım sınırının ötesine giden metamateryallerin kullanıldığı bir mercektir. Kırınım sınırı geleneksel lenslerin ve mikroskopların çözünürlük duyarlılığının limitidir. Farklı yollar ile kırınım sınırının ötesine geçebilen birçok lens çeşidi vardır ancak onları engelleyen ve işlevlerini etkileyen birçok etmen vardır.

Optik cihaz veya optik alet, bir görüntünün görünümünü geliştirmek amacıyla ışık dalgalarını yönlendiren veya bir dizi karakteristik özelliklerini belirlemek amacıyla ışık dalgalarını analiz etmede kullanılan bir araçtır.

<span class="mw-page-title-main">Kızılötesi astronomi</span>

Kızılötesi astronomi, kızılötesi radyasyon ile görüntülenebilen astronomik nesnelerin incelendiği astronomi dalıdır. Kızılötesi ışığın dalga boyu 0.75 ile 300 mikrometre arasında değişir. Kızılötesi, 380 ila 750 nanometre arasında değişen görünür radyasyon ile milimetre altı dalgalar arasında yer alır.

<span class="mw-page-title-main">Optik spektrometre</span> Spektrometre

Bir optik spektrometre, elektromanyetik spektrumun belirli bir bölümü üzerindeki ışığın özelliklerini ölçmek için kullanılan ve tipik olarak spektroskopik analizde malzemeleri tanımlamak için kullanılan bir araçtır. Ölçülen değişken çoğunlukla ışığın yoğunluğudur, ancak örneğin polarizasyon durumu da olabilir. Bağımsız değişken genellikle ışığın dalga boyu veya dalga boyu ile karşılıklı bir ilişkisi olan karşılıklı santimetre veya elektron volt gibi foton enerjisi ile doğru orantılı bir birimdir.

<span class="mw-page-title-main">Negatif indisli metamalzeme</span>

Negatif indisli metamalzemeler (NIM), kırılma indisi belli frekans aralıklarında negatif değer alan metamalzemelerdir. Kırılma indisinin negatif olması bu yapay malzemelerde "negatif kırılma" gibi doğal malzemelerde bulunmayan özelliklere sahip olmasını sağlamaktadır. Bu malzemelerin yapay tepkileri dolayısıyla elektrodinamikteki standart sağ el kuralı kuralı bu ortamlarda tersine döner; bu nedenle negatif indisli metamalzemeler aynı zamanda "solak malzemeler" olarak bilinmektedir.

<span class="mw-page-title-main">John Pendry</span>

Sir John Pendry, İngiliz fizikçi. Imperial College London'da teorik katı hâl fiziği anabilim dalında profesörlük yapan Pendry, metamalzemeler ve perdeleme teorileri üzerine yaptığı çalışmalar ile tanınmaktadır. 2004 yılında Sir unvanını alan fizikçi, 2014 yılında nano-optik alanına olan katkılarından dolayı Norveç Bilimler Akademisi tarafından Kavli Nanobilim Ödülü'ne layık görülmüştür.

<span class="mw-page-title-main">Nanofotonik</span>

Nanofotonik ya da nano-optik, ışığın nanometre boylarındaki özelliklerini ve bu boyutlardaki maddelerle etkileşimini inceleyen fotonik ile nanoteknolojinin bir alt dalıdır. Optik, malzeme bilimi ile elektrik mühendisliği ile yakın bir ilişki içinde olan nanofotoniğin uygulamaları arasında dalga boyundan küçük nano-anten sensörleri, nanometre boyutlu dalga kılavuzları, yeni nesil fotolitografi teknikleri, yüksek çözünürlüklü mikroskoplar ve metamalzemeler bulunmaktadır.