İçeriğe atla

Fresnel integrali

S(x) and C(x) C(x)'nin maximum değeri yaklaşık 0.977451424. Eğer πt²/2 yerine t², dikey ve yatay eksende bu görüntyü koyarsak (aşağıya bakınız).

Fresnel integrali, S(x) ve C(x), iki transendental fonksiyon'dur. Augustin-Jean Fresnel'e atfedilmiştir ve optikte kullanılmaktadır. Yakın alan Fresnel difraksiyon fenomeninde ortaya çıkar; aşağıdaki integral gösterimi ile tanımlanırlar:

S(x) ve C(x)'in eş zamanlı parametrik çizimleri, Cornu spirali veya klotoid olarak bilinen Euler spirali'dir.

Tanım

Normalize Fresnel integrali, S(x) ve C(x). buradaki eğriler, trigonometrik fonksiyon açısıdır πt2/2, yaklaşık karşılığı t2 dir.

Fresnel integralinin kuvvet serisi açılımı bütün x 'ler için yakınsaktır:

ifadesi Abramowitz ve Stegun gibi bazı yazarlar (denk. 7.3.1 – 7.3.2) tarafından S(x) ve C(x)'i tanımlayan integrallerin argümenti olarak kullanılır. Bu fonksiyonların eldesi için, yukarıdaki integraller ve x argümenti ile bölünür.

Euler spirali

Euler spirali (xy) = (C(t), S(t)).boşluğun imaj içindeki tnin eğimi yakınsak spiralin merkezinden pozitif veya negatif sonsuzadır.

Euler spirali,aynı zamanda Cornu spirali olarak da bilinir. veya clothoid denir,S(t) ye karşı C(t) olarak bir parametrik koordinat tarafından yaratılan grafiktir.Cornu spirali Marie Alfred Cornu tarafından bilim ve mühendislikte bir nomogram olarak kırınım hesabı şeklinde yaratılmış idi..

Fresnel integralinin tanımı,sonsuzküçük dx ve dy olmak üzere:

Böylece orijinden spiralin uzunluk ölçümü şöyle ifade edilebilir:

Bu, t parametresi orijinden (0,0) ve sonsuz uzunluğu Euler spirali idi. Spiral boyunca bu vektör [cos(t²), sin(t²)] aynı zamanda birim tanjent vektör olarak ifade edilir,θ = olarak alınıyor.eğrinin uzunluğu t dir, eğrilik, olarak ifade edilebilir:

Ve eğriliğin değişim oranı ile birlikte eğrinin uzunluğu:

Euler spiralinin bir özelliği eğriliğidir.Herhangi bir noktanın orijinden ölçümü spiral boyunca mesafeyle orantılıdır. Bu özellik kullanılarak Karayolu ve demiryolu mühendisliğinde geçiş eğrisi kullanılır.

bir araç birim hızda spiral takip ediyorsa yukardaki türev içinde t aynı zamanda zamanı temsil eder.Bu aracın spiralde izleyeceği yol sabit hız sabit bir oranda açısal hız olacak.

Euler spirali bölümünden yapan adına "clothoid döngüsü olarak" roller-coaster döngüsü şeklinde bilinir

Özellikleri

  • x ın fonksiyonu C(x) ve S(x) Tek fonksiyon'dur.
  • C ve S Tam fonksiyondur.
  • Kuvvet serisi açılımı kullanılarak,karmaşık sayı boyutuna genişletilebilir ve kompleks değişkenlianalitik fonksiyon adını alır.Fresnel integrali hata fonksiyonu'na genişletilebilir:
  • C(x) ve S(x) integrallerinin tanımı terimlerin içinde kapalı form temel fonksiyonu terimleri içinde,özel durumlar dışında geliştirilemez. Bu fonksiyonlar limit'ler x sonsuza giderken bilinebilir:

Geliştirme

Fresnel integrali sınırlarını hesaplamak için kullanılan kısım kontürleri

C ve Sin limiti karmaşık analiz metodu ile açısının eğimi sonsuza giderken bulunabilir. Burada kullanılan fonksiyonun kontür integrali:

karmaşık düzlem içindeki sektör-şeklindeki bölge pozitif x-ekseni tarafından, y = x, x ≥ 0,yarı-ekseni ve sınır etrafındaki orijin merkezi R yarıçaplı dairedir.

integral boyunca R sonsuza giderken, dairesel yay eğimi 0'dır, Gauss integrali'nin gerçel-eksen boyunca integral eğimi

ve sonrası rutin dönüşümleri, integral boyunca ilk çeyrek açıortayı Fresnel integralinin limiti ile ilişkili olabilir.

Genelleme

Fresnel integrali aşağıdaki fonksiyon tarafından genelleştirilebilir.

bununla birlikte sol-yanda a>1 için yakınsak ve sağ-yanda tüm düzlemin 'nın yalancı kutuplarının analitik uzantıları daha az olacaktır

Ayrıca bakınız

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İntegral tablosu</span> Vikimedya liste maddesi

İntegral, Matematikteki temel işlemlerden biridir. Bu maddede yaygın integrallerin hesaplanışını bulacaksınız.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

Aşağıdaki liste üstel fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

where

Aşağıdaki liste trigonometrik fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

Karmaşık analizde kontür integrali veya kontür integrali almak karmaşık düzlemdeki yollar boyunca belli integralleri bulmak için kullanılan bir yöntemdir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

Catalan sabiti matematikte bazen kombinatorik'te tahminler için kullanılır.Tanımı

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

<span class="mw-page-title-main">Euler spirali</span> düzlemsel eğri

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Normalleştirme sabiti, olasılık kuramı ve matematiğin diğer çeşitli alanlarında ortaya çıkar. Örneğin normal dağılımın normalleştirme sabitini hesaplamak için Gauss integrali kullanılabilir.

<span class="mw-page-title-main">Temel fonksiyon</span>

Matematikte temel fonksiyon, tek bir değişken, üs, logaritma, sabit ve n.kökten oluşan ve dört temel işlemin (+ – × ÷) bileşkesi ve kombinasyonu kullanılan fonksiyondur. Bu fonksiyonlar, reel sayılardan oluşan trigonometrik fonksiyonlar ve terslerinden de olabilir.

Trigonometrik seri, formundaki seri.

Sinc fonksiyonu matematik, fizik ve mühendislikte kullanılan bir trigonometrik fonksiyondur. Fonksiyonun normalize edilmemiş ve normalize edilmiş iki şekli vardır.

<span class="mw-page-title-main">Trigonometrik integral</span> bir integral tarafından tanımlanan özel fonksiyon

Matematikte, trigonometrik integraller trigonometrik fonksiyonları içeren temel olmayan integrallerin ailesidir.

<span class="mw-page-title-main">Trigonometrik yerine koyma</span> trigonometrik fonksiyonları içeren integrallerin hesaplanması için yöntem

Matematikte, bir trigonometrik yerine koyma veya trigonometrik ikame, trigonometrik fonksiyon yerine başka bir ifadeyi koyar. Kalkülüste trigonometrik ikameler integralleri hesaplamak için kullanılan bir tekniktir. Bu durumda, radikal fonksiyon içeren bir ifade trigonometrik bir ifade ile değiştirilir. Trigonometrik özdeşlikler cevabı basitleştirmeye yardımcı olabilir. Diğer yerine koyma yoluyla integrasyon yöntemlerinde olduğu gibi, belirli bir integrali değerlendirirken, integrasyon sınırlarını uygulamadan önce, ters türevin sonucunu tam olarak çıkarmak daha basit olabilir.