İçeriğe atla

Fraunhofer kırınımı

Fraunhofer kırınımı ya da uzak-alan kırınımı dalganın uzak bölgelerde yayıldığı durumlarda uygulanan bir Kirchhoff-Fresnel kırınımı yaklaşımıdır.[1][2]

Fresnel sayısının 1'den çok küçük olduğu F << 1 durumlar uzak-alan belirtir. Fraunhofer kırınımı bu uzak-alanın formunun belirlenmesinde kullanılır.

Fraunhofer kırınım denklemi

Yarık S orijinin ortasına denk geleceği şekilde xy düzlemine yerleştirilir. Yarığa tek renkli dalga boyu λ olan bir dalga gönderilir. Yarıktaki düzensizliğin karmaşık genliği A(x',y'), herhangi bir (x,y,z) noktasındaki düzensizliğin genliği ise U(x,y,z) ile ifade edilirse, Fraunhofer kırınım denklemi:

[3]

yarık üzerinden alınan bu integralle ifade edilir.

Denkleme matematiksel olarak denk gelen çeşitli ifadeler vardır. Örneğin:

l=x/z, m=y/z.

Diğer bir ifadeyse:

r ve r' sırasıyla gözlemlenilen noktayı ve yarık üzerindeki bir noktayı, k0 and k ise yarıktaki düzensizliğin dalga vektörlerini ve kırılan dalgaları, a(r' ) da yarıktaki düzensizliğin büyüklüğünü ifade eder.

Yarıktaki değişen genlik iletimi

Karmaşık bir değere de sahip olabilen iletim T(r) yarık boyunca farklı değer alırsa, kırınım integrali:

bu şekildedir. Bu ifade :'nin Fourier sıfır uzayı olduğu bir Fourir dönüşüm fonksiyonudur.

Fraunhofer kırınımı örnekleri

Sonsuz uzunluktaki yarıktan geçen dalganın oluşturduğu kırınım

2. dereceden Sinc fonksiyonu

Fraunhofer kırınımının basit bir örneği tek renkli düzlemsel bir dalganın y ekseni boyunca konumlanmış a genişliğindeki bir yarıktan geçmesiyle elde edilir. Bu dalga aşağıdaki şekildeki gibi ifade edilirse:

: diğerler yerler için

denklemi elde edilir. θ z ekseniyle x noktası ve orijini birleştiren çizginin arasında kalan açıdır, θ çok küçük bir değere sahip olduğu için de sin θ ≈x/z.

Yoğunluk genliğin karesiyle ters orantılıdır:

Sinc fonksiyonun karesi yandaki şekildeki gibidir, bu şekilden de göründüğü gibi θ=0 iken yoğunluk en büyük değerini alır, yoğunluk azalmaya başladıkça da tepeler ve çukurlar oluşur. En fazla ışık yoğunluğu grafikte ilk minimum değerlerinin alındığı aralıklardadır. Bu minimum değerlerine tekamül eden α açısı:

şeklinde de ifade edilebilir.

α << 1 olması olayın uzak-alanda gerçeklişiyor olması anlamına gelir, bu yüzden daha küçük yarıktan oluşan kırınım şeritlerinin yapacağı açı α daha geniş olur. Yarık ve aydınlanma sonsuza varacağından dolayı saçaklar y ekseni boyunca sonsuza dek yayılır.

Sonlu yarıktan geçen dalganın oluşturduğu kırınım

Kare yarıktan geçen dalganın oluşturduğu Fraunhofer kırınımı

a genişliği ve b derinliğine sahip bir yarıktan geçen tek renkli düzlemsel bir dalganın karmaşık (sanal) genliği önceki bölümlerde kullanılana benzer bir yöntemle hesaplanabilir.[4]

Yoğunluk ise:

şeklinde bulunur.

θ x ve z eksenleri arasındaki, φ ise y ve z eksenleri arasındaki açıdır.

Dairesel bir yarıktan geçen dalganın oluşturduğu kırınım

Airy kırınım deseni

Tek renkli düzlemsel dalga dairesel yarıktan geçtiğinde oluşan kırınım deseni normal eksenine göre simetrik olacaktır, yarığın normal ekseniyle gözlemlenen nokta ile yarık merkezini birbirine bağlayan doğru arasındaki α açısına bağlı olarak sanal genlik şu şekilde ifade edilir:[4]

J1 1. dereceden 1. tür Bessel fonksiyonudur.

Işık yoğunluğuysa:

ile ifade edilir. Bu kırınım türü Airy Kırınım Deseni olarak bilinir.

Modeller

Açıklama

Dalga herhangi bir yarık ya da delikten geçip dağılırken birçok başka dalgaya ayrılırsa Fraunhofer kırınımı Huygens–Fresnel prensipine uygun bir şekilde davranır. Dalga yarıktan geçerken birbirlerine paralel olarak hareket eden iki kırınmış dalgaya ayrılır ve görüntü desenini gözlemlemek için dalgaların ilerleyiş doğrultusu üzerine bir ekran yerleştirilmelidir.[5]

Delik modeli

Fresnel kırınımı sırasında gözlemlenen deliğin görüntüsü deliğin hem şekline hem de büyüklüğüne göre değişirken; örneğin kenarlarının daha fazla ya da daha az "sivri" olması gibi, Fraunhofer kırınımı esnasında gözlemlenen delik görüntüsünü yalnızca dalgaların daha paralel ya da daha düzlemsel oluşu etkileyeceği için deliğin büyüklüğüne göre değişkenlik gösterecektir.

Kaynağın uzak-alan kırınım deseni ayarları doğru yapılmış bir lensin odak düzleminde gözlemlenebilir. Noktasal bir kaynağın aydınlattığı ekrandaki uzak-alan kırınım deseni ise kaynağın görüntü düzleminde gözlemlenir.

Işık kaynağı ve ekran delikten yeterli etkiyi sağlayacak kadar uzaktalarsa, deliğe ulaşan dalga yüzleri ve ekran birbirine paraleldir ya da bir düzlem oluştururlar. İki durumdunda geçersiz olduğu zamanlarda Fresnel kırınımı ya da yakın-alan kırınımı meydana gelir ve dalga yüzlerinin eğimleri de hesaba katılır.

Uzak-alan kırınımında ekran deliğe göre hareket ettirilirse, oluşan kırınım deseni deliğin büyüklüğüne bağlı olarak değişim gösterir. Kırınım deseninin hem büyüklüğe hem de şekle bağlı olduğu yakın-alan kırınımında bu özellik geçerli değildir.

Yarık modeli

Yarık kullanılarak oluşturulan Fraunhofer kırınımı iki adet lens ve bir ekran kullanılarak elde edilir. Noktasal ışık kaynağı ve birbirine paralel olacak bu iki lens sayesinde yarıktan geçecek paralel ışınlar elde etmem mümkündür. Yarıktan sonra konulan başka bir lens ise paralel ışınları ekran üzerinde toplayarak gözlemlenebilmelerini sağlar.Birden fazla yarıkla aynı düzenek kurulduğunda farklı bir kırınım deseni oluşur. Bu kırınım şeklinin matematiksel olarak daha basit ifade ediliyor olmasından dolayı, bu düzenek tek renkli ışıkların dalga boylarının yüksek hassasiyetle bulunmasını sağlar.

Ayrıca bakınız

Kaynakça

Notlar

  1. ^ Hecht, E. (1987), p396 -- Definition of Fraunhofer diffraction and explanation of forms.
  2. ^ Hecht, E. (1987), p397 -- diagram and explanation of Fraunhofer diffraction with reference to an opaque shield w/ aperture.
  3. ^ Goodman, Joseph (2005). Introduction to Fourier Optics. Englewood, Co: Roberts & Company. ISBN 978-0974707723. 
  4. ^ a b RS Longhurst, Geometrical and Physical Optics, 1967, Longmans, London
  5. ^ Hecht, E. (1987), p396 - description of the Fraunhofer diffraction through an aperture; details the main equations for the identification of Fresnel and Fraunhofer diffraction.

Kitap kaynakları

Bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Sinüs dalgası</span>

Sinüzoid dalga, matematikte, yalnız süreçlerde, dalgalı akım kuvvet mühendisliğinde ve diğer alanlarda sıklıkla bir fonksiyon olarak yer alır.

<span class="mw-page-title-main">Gabor Filtresi</span>

Bir Gabor filtresi, harmonik bir fonksiyon ile Gaussian bir fonksiyonunun çarpımından oluşan lineer bir filtredir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Işık akısı bir fiziksel niceliktir ve insan gözünün algıladığı ışık gücünün miktarını ifade eder. Bu tariften de anlaşıldığı gibi, ışık akısı hem ışınım yapan kaynağın gücüne hem de insan gözünün özelliğine bağlıdır. SI birimi MKS sisteminde lumen dir.

Fizikte, Sönümlü Poisson Denklemi :

<span class="mw-page-title-main">Fresnel kırınımı</span>

Fresnel kırınımı ya da yakın-alan kırınımı dalganın yarıktan geçerken, yarık ve projeksiyon arasındaki uzaklığa bağlı olarak büyüklüğünde ve şeklinde değişkenlik gösteren kırınım desenlerine sahip olacak şekilde yakın alanda oluşan kırınım sürecidir. Fresnel sayısının 1'den büyük olduğu durumlarda kırınan dalgaların yayıldığı kısa mesafeden dolayı oluşur. Mesafe arttıkça, ilerleyen kırınım dalgaları düzlem ve Fraunhofer kırınımı oluşturur. Birçok Fresnel kırınımının periyodik bombeler yakınında konumlanması yansımanın aynadan yansımış gibi olmasına neden olur; bu sonuç atomik aynalar için kullanılabilir.

 : yarığın karakteristik genişliği
 : gözlemlenen noktanın yarığa olan uzaklığı
 : dalga boyu.

Adını fizikçi Augustin-Jean Fresnel'den alan Fresnel sayısı F optikte özellikle de kırınım teorisinde görülen birimsiz bir sayıdır. Yarıktan geçerek karşıdaki ekrana çarpan bir elektromanyetik dalga için Fresnel sayısı şu şekilde bulunur:

 : yarığın karakteristik genişliği
 : ekran ve yarık arasındaki uzaklık
 : dalga boyu.
<span class="mw-page-title-main">Kırınım ağı</span>

Optikte kırınım ağı, ışığın kırınım yolu ile farklı yönlerdeki hüzmelere dağılmasını sağlayan periyodik bir optik alettir. Buz hüzmelerin yönü ağın periyoduna ve gelen ışığın dalga boyuna bağlıdır.

Bir elektromanyetik dalganın yayılma sabiti, verilen yönde yayılan dalganın genliğindeki değişimin bir ölçüsüdür. Ölçülen nicelik bir elektrik devresindeki gerilim veya akım olabileceği gibi elektrik alan veya akım yoğunluğu gibi bir alan vektörü de olabilir. Yayılma sabiti metre başına değişimin bir ölçüsü olmasının yanı sıra boyutsuz bir niceliktir.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Matematikte, uzunluğu 1 olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u

Fourier optiği dalgaların yayılma ortamını kendisinin doğal modu olduğunu kabul etmek yerine, belirli bir kaynağa sahip olmayan düzlemsel dalgaların üstdüşümlerin olarak addeden Fourier dönüşümlerini kullanan klasik optiğin bir çalışma alanıdır. Fourier optiği, dalgayı patlayan bir küresel ve fiziksel olarak Green's fonksiyon denklemleriyle tanımlanabilen tanımlanabilen ve bu kaynağından dışarıya ışıma yapan dalganın üstdüşümü olarak adddeden Huygens-Fresnel prensibinin ikizi olarak da görülebilir.