İçeriğe atla

Franck–Hertz deneyi

Franck–Hertz deneyi tarihsel önemi olan bir fizik deneyidir. Kuantum mekaniğine öncülük eden Bohr-atom-modeli, bu deney tarafından doğrulanmıştır. Alman fizikçiler James Franck ve Gustav Ludwig Hertz, 1914 yılında atomların enerji seviyelerini deneysel olarak ölçtüler. Böylece, Niels Bohr tarafından geliştirilen, elektronların atom çekirdekleri etrafında kesintili enerji yörüngelerinde yer aldığı atom modeli Franck–Hertz deneyi tarafından deneysel olarak kanıtlanmış oldu. Franck ve Hertz bu başarılarında dolayı 1925 yılında Nobel fizik ödülünü kazandılar.

Diğer bir deyişle, atomların az veya çok şeklinde değil de kesintili miktarlada, lafın gelişi 1 kuanta ya da 2 kuanta şeklinde, enerji soğurabildikleri Franck–Hertz deneyi tarafından doğrulanmıştır.

Deneyin yapılışı

Cıva atomunun enerji seviyeleri

Elektron tabancasından çıkan elektronlar, cıva gazı bulunan bölümde gaz atomlarıyla çarpışmaları sırasında belirli bir enerji kaybederler. Temel halde bulunan gaz atomları kararsız hale geçer. Temel hal atomun en kararlı halidir. Elektronların enerjilerini belirtmede oldukça küçük enerji birimi olan Elektronvolt(eV) kullanılır.

Atomların elektronlarla uyarılması

Birinci örnek: 4,9 eV enerjiye sahip bir elektron, cıva atomu ile çarpıştırılırsa bu gaz atomu enerji alarak kararsız hale geçer. Kısa bir süre sonra aldığı bu enerjiyi foton olarak saçar ve temel hale geri dönmüş olur. Elektron ise 0,04 eV enerji ile yoluna devam eder.

İkinci örnek: 3,85 eV enerjiye sahir bir elektron, cıva atomunun enerjisini değiştirmez. Başka bir ifadeyle bu elektron atomu uyarmadan geçer.

Üçüncü örnek: Enerji seviyelerinin en büyük değerine iyonlaşma enerjisi denir (Cıva için 10,40 eV). Eğer elektronun enerjisi, iyonlaşma enerjisinden büyük veya iyonlaşma enerjisine eşit ise atom iyonlaşır. Cıva atomu 12,00 eV enerjili bir elektron ile uyarılırsa atomdan bir elektron kopar ve pozitif yüklü bir iyon halini alır.

Dördüncü örnek: 9,75 Volt(V) gerilim altında hızlandırılan elektronların, 9,75 eV 'ye kadar enerjileri yükselebilir. Cıva gazı ile dolu bir gaz odasında:

Bu elektron hiçbir atomu uyarmazsa:

  • eV enerji ile gaz odasından dışarı çıkabilir.

Bu elektron herhangi bir atomu uyarırsa:

  • eV enerji ile gaz odasından dışarı çıkabilir veya başka bir atomu uyararak eV enerji ile gaz odasından dışarı çıkabilir.
  • eV enerji ile gaz odasından dışarı çıkabilir.
  • eV enerji ile gaz odasından dışarı çıkabilir.

Atomların fotonlarla uyarılması

Bir fotonun temel haldeki bir atomu uyarması için en büyük enerji seviyesi hariç diğer enerji seviyelerinden herhangi biri ile sayısal değerinin aynı sayı olması gerekir. Örneğin cıva için; 7 eV enerjili foton uyarma yapamaz. Fotonla uyarılan atom aldığı enerjiyi foton olarak tekrar saçar.

Eğer fotonun enerjisi, iyonlaşma enerjisinden büyük veya iyonlaşma enerjisine eşit ise atom iyonlaşır.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Atom</span> tüm maddelerin kimyasal ve fiziksel özelliklerini taşıyan en küçük yapıtaşı

Atom veya ögecik, bilinen evrendeki tüm maddenin kimyasal ve fiziksel niteliklerini taşıyan en küçük yapı taşıdır. Atom Yunancada "bölünemez" anlamına gelen "atomos"tan türemiştir. Atomus sözcüğünü ortaya atan ilk kişi MÖ 440'lı yıllarda yaşamış Demokritos'tur. Gözle görülmesi imkânsız, çok küçük bir parçacıktır ve sadece taramalı tünelleme mikroskobu vb. ile incelenebilir. Bir atomda, çekirdeği saran negatif yüklü bir elektron bulutu vardır. Çekirdek ise pozitif yüklü protonlar ve yüksüz nötronlardan oluşur. Atomdaki proton sayısı elektron sayısına eşit olduğunda atom elektriksel olarak yüksüzdür. Elektron ve proton sayıları eşit değilse bu parçacık iyon olarak adlandırılır. İyonlar oldukça kararsız yapılardır ve yüksek enerjilerinden kurtulmak için ortamdaki başka iyon ve atomlarla etkileşime girerler.

<span class="mw-page-title-main">Elektron dizilimi</span>

Elektron dizilimi, atom fiziği ve kuantum kimyasında, bir atom ya da molekülün elektronlarının atomik ya da moleküler orbitallerdeki dağılımıdır. Örneğin Neon atomunun elektron dizilimi 1s2 2s2 2p6 olarak gösterilir.

Fotoelektrik etki ya da fotoemisyon, ışık bir maddeyi aydınlattığında elektronların ya da diğer serbest taşıyıcıların ortaya çıkmasıdır. Bu bağlamda ortaya çıkan elektronlar, fotoelektronlar olarak adlandırılır. Bu olay genellikle elektronik fiziğinde hatta kuantum kimyası ya da elektrokimya gibi alanlarda çalışılır.

Planck sabiti (h), bir fizik sabitidir ve kuantum mekaniğindeki aksiyonum kuantumu için kullanılır. Değeri h= 6.62607015×10−34 J⋅s' dir. Planck sabiti daha önceleri bir Fotonun enerjisi (E) ile elektromanyetik dalgasının frekansı (ν) arasında bir orantı idi. Enerji ile frekans arasındaki bu ilişki Planck ilişkisi veya Planck formülü olarak adlandırılır:

<span class="mw-page-title-main">Bohr modeli</span> bir atom modeli

Bohr atom modeli, Niels Henrik Bohr tarafından 1913 yılında, Rutherford atom modelinden yararlanılarak öne sürülmüştür.

<span class="mw-page-title-main">Enerji seviyesi</span>

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur. Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.

<span class="mw-page-title-main">İyonlaşma derecesi</span>

İyonizasyon derecesi, örneğin gaz ya da sulu çözeltilerdeki nötr parçacıkların, yüklü parçacıklara iyonize olmasının oranına denir. Düşük iyonizasyon derecesine kısmi iyonizasyon ve yüksek iyonizasyon derecesine de tam iyonizasyon adı verilir.

Elektronvolt (eV) değeri yaklaşık 1.6 x 10−19 J olan enerjiye verilen addır. Tanım olarak bir elektronun, boşlukta, bir voltluk elektrostatik potansiyel farkı katederek kazandığı kinetik enerji miktarıdır. Diğer bir deyişle, 1 volt çarpı elektronun yüküne eşittir. 1 volt temel yük ile çarpıldığında buna eşit olmaktadır.

Auger etkisi, bir atomun, aynı atom arasında bir elektron emisyon ile atomdaki boşlukları doldurması olayı. Bir çekirdek elektron kaldırıldığında, bir boşluk bırakır ve daha yüksek enerji düzeyinden bir elektron bu boşluğu doldurur. Çoğu zaman bu enerji salınan bir foton şeklinde adlandırılmasına rağmen, kimi zaman da transferle aktarılır. Bu ikinci kopan elektrona Auger elektron denir. Keşfeden Pierre Victor Auger'dir.

<span class="mw-page-title-main">Gustav Hertz</span> Fizikçi

Gustav Ludwig Hertz Alman fizikçi.

Rydberg sabiti, Rydberg formülündeki sabittir ve uyarılmış hidrojen atomunun yaydığı elektromanyetik ışınımın dalgaboyunun hesaplanmasında kullanılır. Bu sabit adını İsveçli fizikçi Johannes Rydberg'ten (1854-1919) almıştır. Sabitin sayısal değeri fizikte kullanılan diğer sabitlerden türetilmiştir.

Modern fizik, klasik fizik ile tanımlanamayan olayları açıklamak üzere ortaya atılmış teorilerin tümüdür. Einstein'ın özel görelilik kuramından, Max Planck'ın kara cisim ışıması kuramına; Schrödinger'in kedisinden, kuark ve bozonlara kadar her şey modern fizik adı altında buluşur.

<span class="mw-page-title-main">Enerji biçimleri</span>

Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.

Kimyada kimyasal enerji, pil, ampul ve hücre gibi bir kimyasal maddenin tepkime esnasındaki değişiminin potansiyelidir. Kimyasal bağ kurma veya koparma sonucu enerji açığa çıkar. Bu enerji bir kimyasal sistem tarafından ya emilir ya da yayılır.

Kuantum mekaniği madde ve atomların ve atom içindeki parçacıklar ölçeğinde enerji ile etkileşimlerinin davranışını açıklayan bilimsel ilkeler organıdır: Bu makaleye teknik olmayan konuların tanıtımında ulaşabilirsiniz.

Kuantum mekaniğinin tarihi modern fizik tarihinin önemli bir parçasıdır. Kuantum kimyası tarihi ile iç içe olan kuantum mekaniği tarihi özünde birkaç farklı bilimsel keşif ile başlar; 1838’de Michael Faraday tarafından elektron demetlerinin keşfi, Gustav Kirchhoff tarafından 1859-60 kışı siyah cisim ışıması problemi beyanı, Ludwig Boltzmann’ın 1877 yılındaki fiziksel bir sistemin enerji seviyelerinin ayrıklardan olabileceği önerisi, 1887 yılında Heinrich Hertz’in fotoelektrik etkiyi keşfetmesi ve Max Planck’ın 1900 yılında ileri sürdüğü, herhangi bir enerji yayan atomik sisteminin teorik olarak birkaç farklı “enerji elementi” ε (epsilon) ne bölünebilmesi, bu enerji elementlerinden her birinin frekansına ν orantılı olması ve ayrı ayrı enerji üretebilmesi hipotezi, aşağıdaki formülle gösterilmiştir;

Kimyasal elementlerin ya da kimyasal bileşiklerin emisyon spektrumu atom ya da moleküllerin yüksek enerji seviyesinden düşük enerji seviyesine geçişinden elde edilen elektromanyetik radyasyonun frekans spektrumudur. Yayılmış fotonun enerjisi iki enerji düzeyi arasındaki farka eşittir. Her atom için birçok mümkün geçişler vardır ve enerji düzeyleri arasındaki her geçiş spesifik enerji farkına sahiptir. Bu farklı geçişlerin toplamı, farklı ışınlar halinde gönderilmiş dalga boylarına ve emisyon spektrumunun düzenlenmesine neden olur. Her elementin emisyon spektrumu özeldir. Dahası, spektroskopi elementlerin madde içindeki bilinmeyen kompozisyonunu tespit etmek için kullanılabilir. Buna benzer olarak, moleküllerin emisyon spektrumları maddelerin kimyasal analizlerinde kullanılabilir.

Fizikte, foton gazı, fotonların gaz benzeri birikmesidir ki hidrojen ve neon gibi sıradan gazlarla basınç, sıcaklık, entropi gibi benzer özelliklere sahiptir. Foton gazının dengedeki en yaygın örneği siyah cisim ışımasıdır.