İçeriğe atla

Franck-Condon ilkesi

Figür 1 Franck–Condon prensibi enerji şeması. Elektron geçişleri, nükleer hareketlere kıyasla daha fazla olduğunda nükleer koordinatlarda küçük değişimlere karşılık verildiğinde ,titreşim seviyeleri ayrıcalıklıdır. Potansiyel kaynaklar, v=0 ve v=2 arasında özel geçişlerle gösterilmiştir.

FranckCondon ilkesi, spektroskopide ve kuantum kimyasında bir kuraldır ve titreşimsel geçişlerin yoğunluğu olarak açıklanır. Titreşimsel geçişler uygun enerjideki fotonların emme ve emisyonundan dolayı elektronik ve titreşimsel enerji seviyelerinde eş zamanlı değişiklik olur. Prensip belirtiyor ki, elektronik geçiş sırasında eğer bu iki titreşimsel dalga fonksiyonları büyük ölçüde aşar ise bir titreşimsel enerji seviyesinden diğerine değişiklik olur.

Genel bakış

Figür 2 Şema figür 1 de enerji diyagramının yerini tutan emilim ve flüoresans spektrasını gösteriyor. Bu simetri, yerin ve uyarılmış durumdaki potensiyal kuyuların eşit şekilde olmasından dolayı bulunur. Bu dar çizgiler genellikle seyreltilmiş gazların spektralarında gözlemlenir. Koyu eğriler katı ve sıvı olarak oluşan ve aynı geçişlerde genişlemelerin heterojen olduğunu gösterir. Düşük titreşim seviyeleri arasındaki elektronik durumlardaki (0-0 geçişleri) elektronik geçişler emilimde ve flüoresans ta aynı enerjiye sahiptir.
Figür3. Kısmen klasik sarkacı Franck-Condon ilkesinin bir benzetimidir. Titreşim geçişleri dönüm noktalarına geçit verir çünkü hem momentum hem de nükleer koordinatlar gösterilen iki enerji seviyesi ile uyuşur. Bunlara ek olarak, 0–2 titreşim geçişleri ayrıcalıklıdır.

Franck–Condon ilkeleri iyi yapılandırılmış yarı klasik yorumlamalardır ve James Franck [Franck 1926] in orijinal katkılarına dayanır. Elektronik geçişler temel olarak anlık nükleer hareketlerin zaman ölçümleriyle kıyaslanmasıdır, böylece eğer moleküller, elektronik geçişler sırasında yeni bir titreşim seviyesinde hareket ederse, bu yeni titreşim seviyesi nükleer konum ve moment anlık uyumlu olmalıdır. Basit harmonik salınımdaki titreşimin (salınımın) içindeki yarı klasik görünümde, gönme noktalarında gerekli şartlar oluşur ve burada momentum sıfır olur.

Kuantum mekaniği resminde ise titreşimsel seviyede ve bunların kuantum harmonik salınımdaki titreşimsel dalga fonksiyonlarında, veya moleküllerin potansiyel enerjisi için daha karışık yaklaşımlarda örnek olarak Morse potensityeli gibi. Figür 1 gösteriyor ki ; moleküldeki titreşimsel geçişler ve bununla birlikte Morse potansiyel enerji fonksiyonları için Franck–Condon ilkesi hem zeminde hem de uyarılmış elektron durumundadır.Düşük sıcaklık yaklaşımlarında iken,molekül elektronik durumdaki titreşim seviyesinde ve fotonun gerekli enerjisindeki emiliminde (v=0) işe koyulur ve bu geçişleri uyarılmış elektronik durumunda yapar. Yeni durumdaki elektron yapısı, moleküldeki dayanak oluşturan çekirdekler denge posizyonunu değiştirir. Bu figür de yer ve birinci uyarılmış katman arasındaki işaretlenmiş nükleer koordinatlarda  q 01  olarak değiştirilmiştir. Nükleer koordinat eksenlerinde bu iki atomlu molekülün en kolay durumunda internükleer durumunu obelirtmiştir. Geçişler sırasındaki sürekli nükleer koordinatlar hakkındaki tahminlerden dolayı dikey oklar aracılığıyla bu titreşimsel geçişler gösteriyor.Bu olasılık the molecule can end up in any particular vibrational level is proportional to the square of the (vertical) overlap of the vibrational wavefunctions of the original and final state (Kuantum mekanik formülünü aşağıda görebilirsiniz.).Elektronik uyarılmış durumdaki moleküller hızlıca dinlenme durumuna geçmek için düşük uyarılmış elektronik durumdaki düşük titreşimsel seviyeye geçer. (Kasha's rule) ve bu bozunumdan foton emisyonu ilemelektronsal yer durumuna geçerler. Franck–Condon prensibi emilim ve ışınım için eşit uygulanır.

Emilimde ve ışınım da uygulanan Franck–Condon prensibi,Kasha nın kuralları ile birlikte ortalama olarak yansıma(ayna) simetrisine yol açtı ve bu figür 2 de gösteriliyor. Soğukta moleküllerin bu titreşimsel yapısı, seyrek gaz bireysel geçişlerin heterojen kayıplarından dolayı çok rahat bir şekilde gözlemlenebilir. Titreşimsel geçişler figür 2 de dar şekilde çizilmiştir , eşit derece boşluklarla  Lorentzian çizgisel şekilleridir. Titreşimsel seviyelerin arasındaki eşit boşluklar basit harmonik salınımın parabolik potansiyeli için sadece bir durumdur,daha gerçekçi potansiyeller de, örneğin çoğu figür 1 de gösterilmiştir, titremsel enerji arttıkça enerji boşlukları azalır. Elekronsal geçişler için ve buradan düşük titreşimsel seviye durumu sıklıkla 0–0 (sıfır sıfır) olarak geçişlerde bahsedilir ve emilim ve ışınım aynı enerjiye sahiptir.

İlkenin gelişimi

1926 'da yayımlanan  Faraday toplumun tutanağı, James Franck kimyasal reaksiyonlarda indüklenmiş fotonun mekanzimasıyla alakadar olmuştur. Farzedilen mekanizm molekülün foton tarafından uyarılması ve bunu takiben kısa bir uyarılma periyodu sırasında başka moleküller tarafından çarpışma olmasıdır. Soru şuydu eğer mümkünse moleküller küçük aşamalarla ışık ürünlerine ayırılabilir mi ayırılamaz mı, fotonun emilimi, çarpışmalar haricinde. Molekülleri parçalara ayırmak amacıyla, titreşimsel enerjinin çözülümü aşması bunun kazanımı gereklidir, bu şu demek, kimyasal bağları parçalamak için enerji gereklidir. Ancak,aynı zamanda bilindiği üzere, moleküller emilen enerjiyi sadece müsaade edilen kuantum geçişleriyle uyumlu sağlayacaktır,ve  potansiyel kuyunun enerji seviyesindeki çözülmenin üzerinde titreşimsel hareket yoktur.Yüksek enerjili foton emilimi çözülme yerine yüksek elektronsal durum geçişlerine yol açar. Molekülde ne kadar titreşimsel enerji olduğu incelendiğinde eğer yüksek elektronsal seviyede uyarılmışsa  kazanabilir ve bu titreşimsel enerji molekülleri parçalara hemen ayrımak için yeterli olabilir, düşük elektronsal durumda ve yüksek elektronsal durum arasındaki bağlayıcı enerjideki muhtemel değişimleri gösteren üç diyagram çizmiştir.

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

<span class="mw-page-title-main">Enerji seviyesi</span>

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur. Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.

<span class="mw-page-title-main">Manyeto optik tuzak</span>

Manyeto optik tuzak, soğuk, kapana kısılmış nötr örnekleri üretebilmek için lazer soğutma ve uzamsal olarak değişen bir manyetik alan kullanan bir cihazdır. Bir MOT'tan elde edilen sıcaklıklar, foton geri tepme sınırının iki veya üç katı olan atomik türe bağlı olarak birkaç mikrokelvin kadar düşük olabilir. Bununla birlikte, çözülmemiş aşırı ince yapıya sahip atomlar için, örneğin;bir MOT'nta elde edilen sıcaklık Doppler soğutimitinden den daha yüksek olacaktır.

<span class="mw-page-title-main">Walter Kohn</span> Amerikalı fizikçi (1923 – 2016)

Walter Kohn, John A. Pople ile birlikte 1998 Nobel Kimya Ödülü sahibi Yahudi kökenli Amerikalı fizikçi. Walter Kohn ve John Pople bu ödülü kuantum kimyası üzerine bir birlerinden bağımsız olarak yaptıkları çalışmalar üzerine almaya hak kazanmışlardır. Kohn özelde bu ödülü Atomlar arasındaki kimyasal bağları açıklamak üzere karmaşık matematiği kuantum mekaniğine uygulayarak geliştirdiği yoğunluk fonksiyonları teorisi sayesinde kazanmıştır.

Dolanıklık, kuantum mekaniğine özgü bir olgudur. Kuantum fiziğine göre iki benzer parçacık birbiriyle eşzamanlılığa sahiptir. Bu parçacıklar ayrı yerlerde birbirinden eşzamanlı olarak etkilenirler. İki elektron parçası ışık yılına yakın uzaklıkta olsa dahi birbirlerini etkileyebilirler. Bu sayede birbirinden ışık yılına yakın bir uzaklıkta olan bir elektron kendi çevresi etrafında sağa dönerken diğer bir elektron parçası sola dönecektir.

<span class="mw-page-title-main">Rydberg atomu</span>

Rydberg atomu çok yüksek temel nicem sayılı bir veya iki elektrona sahip bir uyarılmış atomdur Bu atomlar elektrik ve manyetik alana abartılı tepkiler vermeyi de içinde barındıran, uzun bozunma devri ve yaklaşık elektron dalgafonksiyonları, bazı şartlar altında çekirdekler etrafındaki elektronların klasik yörüngeleri gibi kendilerine has birçok özelliğe sahiptir. Çekirdek elektronları dış elektronları çekirdeğin elektrik alanından kalkanlar, öyle ki belirli bir mesafeden hidrojen atomundaki bir elektronun tecrübe ettiği gibi elektrik potansiyeli belirleyicidir.

Kimyasal elementlerin ya da kimyasal bileşiklerin emisyon spektrumu atom ya da moleküllerin yüksek enerji seviyesinden düşük enerji seviyesine geçişinden elde edilen elektromanyetik radyasyonun frekans spektrumudur. Yayılmış fotonun enerjisi iki enerji düzeyi arasındaki farka eşittir. Her atom için birçok mümkün geçişler vardır ve enerji düzeyleri arasındaki her geçiş spesifik enerji farkına sahiptir. Bu farklı geçişlerin toplamı, farklı ışınlar halinde gönderilmiş dalga boylarına ve emisyon spektrumunun düzenlenmesine neden olur. Her elementin emisyon spektrumu özeldir. Dahası, spektroskopi elementlerin madde içindeki bilinmeyen kompozisyonunu tespit etmek için kullanılabilir. Buna benzer olarak, moleküllerin emisyon spektrumları maddelerin kimyasal analizlerinde kullanılabilir.

Tetrakuark, parçacık fiziğinde, dört valans kuarktan oluşan ve varlığı tahmin edilmesine karşın henüz kanıtlanamamış egzotik mezondur. Prensipte, bir tetrakuark durumu kuantum renk dinamiği içinde yer alabilmektedir.

Kuantum durumu ya da kuantum hâli, kuantum mekaniğinde, izole edilmiş bir kuantum sistemini ifade etmek için kullanılan terimdir. Bir kuantum durumu, her bir gözlemlenebilir değer için birer olasılık dağılımı sağlar.

<span class="mw-page-title-main">Egzotik hadron</span>

Egzotik hadron, kuarklar ile gluonlardan meydana gelen, sıradan hadronların aksine iki ya da üç kuarktan fazlasını içeren atomaltı parçacıktır. Egzotik baryonlar, üç kuarka sahip sıradan baryonlardan; egzotik mezonlar ise birer kuark ve antikuarka sahip sıradan mezonlardan ayrılır. Teoride, renk yükü beyaz olduğu müddetçe bir hadronun kuark sayısında herhangi bir limit yoktur.

<span class="mw-page-title-main">J/psi mezonu</span>

J/psi mezonu veya psion bir atomaltı parçacık. Bir tane tılsım kuark ve bir de tılsım antikuarktan oluşan bir çeşni değiştiren yüksüz mezonudur. Bir tılsım kuark ve bir tılsım antikuarkın bağlı hali ile oluşan mezonlar "karmoniyum" olarak anılır. En yaygın karmoniyum, düşük değişim kütlesi, 3.0969 GeV/c23,0969 GeV/c2 yani ηc̅ ' nin (2.9836 GeV/c22,9836 GeV/c2) biraz üzerinde, sebebi ile J/psi mezondur. Bu mezon ortalama 7.2×10−21 s7,2×10-21 s ömre sahiptir.Fakat bu süre tahmin edilen 1000 kat daha uzundur.

Hadronlaşma veya hadronizasyon, hadronların kuarklar ve gluonların dışında oluşma işlemidir. Bu olay, kuarklar ve gluanların oluştuğu bir parçacık çarpıştırıcıda yüksek enerjili bir çarpışma ile olur. Renk hapsi nedeni ile kuarklar ve hadronlar kendi başlarına var olamazlar. Standart Model'e göre, bunlar vakumdan spontane şekilde oluşmuş kuarklar ve antikuarklar ile birleşerek hadronları oluştururlar. Hadronlaşmanın kuantum renk dinamikleri henüz tam olarak anlaşılamamıştır ama birkaç olgu çalışmasında modellenip parametrize edilmiştir. Bu çalışmalardan biri Lund ip modelidir. Aynı zamanda uzun menzil kuantum renk dinamiği yaklaşım şemaları da mevcuttur.

Parçacık fiziğinde asimptotik özgürlük, enerji ölçeği yükseldikçe ve ilgili uzunluk ölçeği azaldıkça iki parçacık arası bağın asimptotik olarak zayıf olmasına sebebiyet veren ayar teorilerinin özelliklerinden biridir.

Robert Curtis Retherford, Amerikalı fizikçidir. Columbia Radiation Laboratory'den Willis Lamb'ın öğrencisi olarak mezun olmuştur. Retherford ve Lamb, yeni bir kuantum elektrodinamiği anlayışına doğru belirleyici bir deneysel adım olan hidrojenin ince yapısındaki Lamb kaymasını gösteren deneyi gerçekleştirdi.

<span class="mw-page-title-main">Elektron-pozitron annihilasyonu</span>

Elektron-pozitron anhilasyonu, bir elektron ve bir pozitron çarpıştığı zaman oluşur. Düşük enerjilerde, çarpışmanın sonucu elektron ve pozitronun anhilasyonu (imhası) ve gama ışını fotonlarının oluşmasıdır:


e-
 + 
e+
→ 
γ

γ
<span class="mw-page-title-main">Annihilasyon</span> Parçacık fiziğinde bir elektron çarpışması olayı

Annihilasyon veya yok olma, parçacık fiziğinde, bir atomaltı parçacık ve ilgili antiparçacığı çarpıştığında başka parçacıklar üretme işlemine, örneğin bir elektron ile çarpışan bir pozitronun iki foton üretmesine, verilen addır. İlk çiftin toplam enerjisi ve momentumu annihilasyon işleminde korunur ve oluşan yeni parçacıklar arasında dağıtılır. Antiparçacıklar, parçacıkların tam tersi ilave kuantum sayılarına sahiptir, bu nedenle çarpışacak çiftin tüm kuantum sayılarının toplamı sıfırdır. Bu nedenle enerjinin ve momentumun korunmu yasalarına uyulduğu takdirde, toplam kuantum sayıları sıfır olan herhangi bir parçacık dizisi üretilebilir.

Orbiton, holonlar ve spinonlar ile birlikte, katıların içindeki elektronların spin-yük ayrımı sırasında bölünerek oluşturduğu ve mutlak sıfıra yakın sıcaklıklarda hapsedilen sanki parçacıktır. Elektron, teorik olarak her zaman bu üç sanki parçacığın bir bağlı durumu olarak kabul edilmektedir. Bunlardan orbitron, elektronun yörüngesel konumunu taşımaktadır. Belli şartlar altında ise hapis durumlarından kurtularak bağımsız parçacıklar olarak davranabilmektedirler.

Zamana bağlı yoğunluk-fonksiyonel teori, fizik ve kimyada elektrik veya manyetik alanlar gibi zamana bağlı potansiyellerin varlığında çok gövdeli sistemlerin özelliklerini ve dinamiklerini araştırmak için kullanılan bir kuantum mekanik teoridir. Bu tür alanların moleküller ve katılar üzerindeki etkisi, uyarılma enerjileri, frekansa bağlı tepki özellikleri ve fotoaborpsiyon spektrumları gibi özellikleri elde etmek için TDDFT ile incelenebilir.

Fizikte, Feshbach rezonansı iki yavaş atomun çarpışması üzerine, kısa ömürlü istikrarsız bir bileşik oluşturarak geçici olarak birbirine yapıştıklarında ortaya çıkabilir. Bu, en az bir iç serbestlik derecesi ile reaksiyon koordinatları arasındaki ayrışmaya yol açan bağ(lar)ın yok olması durumunda bağlı bir durumun elde edildiği çok cisimli sistemlerin bir özelliğidir. Bir bağlı durum oluşmadığında ortaya çıkan ters durum ise şekil rezonansıdır. Adını MIT'de fizikçi olan Herman Feshbach'tan almıştır.