İçeriğe atla

Fraktal

Sierpinski üçgeni; mutlak surette simetrik bir fraktal.
Bir fraktalı giderek yakınlaşarak izleyen bir animasyon. Simetriye dikkat ediniz.
Mandelbrot kümesinin oluşturduğu fraktal.

Fraktal; matematikte, çoğunlukla kendine benzeme veya oransal kırılma özelliği gösteren karmaşık geometrik şekillerin ortak adıdır. Fraktallar, klasik, yani Öklid (Euklides) geometrideki kare, daire, küre gibi basit şekillerden çok farklıdır. Bunlar doğadaki, Öklid'çi geometri aracılığıyla tanımlanamayacak pek çok uzamsal açıdan düzensiz olguyu ve düzensiz biçimi tanımlama yeteneğine sahiptir. Fraktal terimi parçalanmış ya da kırılmış anlamına gelen Latince "fractus" sözcüğünden türetilmiştir. İlk olarak 1975'te Polonya asıllı matematikçi Benoit B. Mandelbrot tarafından ortaya atılan kavram, yalnızca matematik değil fiziksel kimya, fizyoloji ve akışkanlar mekaniği gibi değişik alanlar üzerinde önemli etkiler yaratan yeni bir geometri sisteminin doğmasına yol açmıştır.

Tüm fraktallar kendine benzer ya da en azından tümüyle kendine benzer olmamakla birlikte, çoğu bu özelliği taşır. Kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününe benzer. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza değin sürebilir; öyle ki, her parçanın her bir parçası büyütüldüğünde, yine cismin bütününe benzer. Bu fraktal olgusu, kar tanesi ve ağaç kabuğunda kolayca gözlenebilir. Bu tip tüm doğal fraktallar ile matematiksel olarak kendine benzer olan bazıları, stokastik (olasılıksal) yani rastgeledir; bu nedenle ancak istatistiksel olarak ölçeklenirler. Fraktal cisimler, düzensiz biçimli olduklarından ötürü Öklid'çi şekilleri ötelemezler. (Öteleme bakışına sahip bir cisim kendi çevresinde döndürüldüğünde görünümü aynı kalır.)

Fraktal Boyut

Fraktalların belirleyici bir özelliği, fraktal boyut olarak adlandırılan matematiksel bir parametrelerinin olmasıdır. Bu parametrenin bütünüyle geçerli ve basit bir tanımı yoktur. Mandelbrot bu parametreyi Haussdorf boyutu ile denk tutmaktadır. Fraktal boyut, Öklid'çi şekillerin topolojik boyutlarına eşit, fraktallar için topolojik boyutlarından büyüktür. Örneğin Cantor kümesinin fraktal boyutu , topolojik boyutu ise 'dır.[1]:14-15

Kendisinin tam bir kopyasını daha küçük boyutlarda içeren fraktallar için fraktal boyutu ve kendine benzerlik boyutu değerleri aynıdır. Bir şekil kendisine benzeyen kadar kopyadan oluşuyor ve her bir kopya özgün şekle göre, uzunluk olarak, büyüklüğünde ise, bu şeklin kendine benzeme boyutu ile verilir. Yukarıda örnek olarak verilen Sierpinski üçgeni, kendine benzeyen kopyadan oluşmuş, her bir kopya da özgün şeklin yarısı () uzunluğundadır; dolayısıyla Sierpinski üçgenin fraktal boyutu 'tir.

Teorinin gelişimi

Benoit Mandelbrot, IBM laboratuvarlarında çalışmaya başladığında Oyun kuramı, iktisat ve emtia fiyatları gibi çeşitli alanlarda çalışan bir mühendisti. Bu çalışmalarını tamamladığında veri iletim hatlarındaki gürültü üzerinde çalışmaya başladı. Mühendisler, veri aktarımı sırasında oluşan gürültü karşısında çaresiz kalmışlardı. Mühendislerin bu soruna bulabildikleri en iyi çare, sinyal gücünü artırmaktan ileri gidememişti; ama sinyal gücünün arttırılması da tam bir çözüm sağlamamıştır. İletim hatlarındaki gürültü doğası gereği gelişigüzel olmasına rağmen kümeler halinde gelmekteydi. İletişim süresi boyunca hatasız periyotlar arasında hatalı periyotlar yer almaktaydı. Hatalı periyotların incelenmesi, hata örüntüsünün sanıldığından daha karmaşık olduğunu ortaya koymuştur. Mandelbrot, bir günlük veri trafiğini birer saatlik periyotlara ayırdı. Daha sonra, hatanın gözlendiği periyotları ele alıp bu periyotlar yirmişer dakikalık parçalara böldü ve yine gördü ki, bu birer saatlik periyotların içinde de yine hatasız bölümler bulunmaktaydı. Mandelbrot, hatalı bölümler daha kısa zaman aralıklarına bölmeye devam etti. Ve sonunda hatasız periyotların halen var olduğunu gösterdi. Bu arada aykırı bir durum Mandelbrot'un dikkatini çekti: hatalı periyotların hatasız periyotlara oranı periyodun uzunluğundan bağımsız olarak neredeyse sabit kalıyordu.

Kaynakça

  1. ^ Mandelbrot, Benoit B. (1983) [1977]. Fractal Geometry of Nature (İngilizce) (yenilenmiş ve ekli bas.). New York, ABD: W. H. Freeman and Company. ISBN 978-0-7167-1186-5. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Grup teorisi</span> simetrileri inceleyen matematik dalı

Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

<span class="mw-page-title-main">Kelebek etkisi</span> Küçük Nedenlerin Büyük Etkileri Olabileceği Fikri

Kelebek etkisi bir sistemin başlangıç verilerindeki küçük değişikliklerin büyük ve öngörülemez sonuçlar doğurabilmesine verilen addır. Edward N. Lorenz'in çalışmalarından biri olan Kaos Teorisi ile ilgilidir. Daha sonralarda hava durumu ile ilgili verdiği şu örnek ile ünlenmiştir. Amazon Ormanları'nda bir kelebeğin kanat çırpması, ABD'de fırtına kopmasına neden olabilir. Farklı bir örnekle bu, bir kelebeğin kanat çırpması, Dünyanın yarısını dolaşabilecek bir kasırganın oluşmasına neden olabilir. Kelebek etkisini tam olarak anlayabilmek için kaos teorisini anlamak gerekir. Aralarındaki ilişkiyi bir analoji ile açıklayabiliriz; eğer kaos teorisini yan yana dizilmiş domino taşları olarak düşünürsek, kelebek etkisi birinci taşa dokunulmasıdır. Kaos teorisi, sürprizlerin, doğrusal olmayan ve öngörülemeyenlerin bilimidir. Doğal bilimlerin çoğu fiziksel ve kimyasal reaksiyonlar gibi tahmin edilebilecek olaylarla uğraşırken; kaos teorisi, türbülans, hava durumu, borsa gibi önceden tahmin edilemeyen ve kontrol etmenin imkansız olduğu doğrusal olmayan olaylarla ilgilenir. Kaos teorisi fraktal geometri ile açıklanabilir çünkü temellerinde yatan mantık aynıdır. Fraktal geometri, doğanın geometrisidir. Doğayı daha iyi anlayabilmemizi sağlar. 20. yüzyıla kadar Öklid geometrisi kullanılmıştır. Doğrusal şekiller, üçgenler, dikdörtgenler ve karelerle doğayı açıklamamız mümkün olmayınca fraktal geometri doğmuştur. Doğadaki ağaçlar, nehirler, bulutlar vs. fraktal şekiller oluştururlar ve doğadaki olaylar kaotik davranışlar sergiler. Doğayı anlayabilmek için fraktal geometriyi ve kaos teorisini anlamak gerekir. Fraktal terimi ilk defa Polonya asıllı matematikçi Benoit Mandelbrot (1924-2010) tarafından 1975 yılında ortaya atılmıştır. Fraktallar, büyükten küçüğe birbirine benzeyen birçok geometrik şeklin oluşturduğu, sonsuzluğa doğru giden, kompleks ve göz kamaştırıcı şekillerdir. Mandelbrot’un geliştirdiği Mandelbrot kümesi, sanal karmaşık sayıların kullanılmasıyla elde edilen fonksiyonları bilgisayar ortamında muhteşem fraktallara dönüştürülebilen kümedir.

<span class="mw-page-title-main">Öklid</span> Yunan matematikçi, aksiyomatik geometrinin mucidi

Öklid (Grekçe: Εὐκλείδης Eukleídēs; MÖ 330 - 275 yılları arasında yaşamış, İskenderiyeli bir matematikçidir. Megaralı Öklid'den ayırmak için bazen İskenderiyeli Öklid olarak anılır, genellikle "geometrinin kurucusu" veya "geometrinin babası" olarak anılan bir Yunan matematikçiydi. Ptolemy I döneminde İskenderiye'de aktifti. Elemanlar, yayınlandığı zamandan 19. yüzyılın sonlarına veya 20. yüzyılın başlarına kadar matematik öğretimi için ana ders kitabı olarak hizmet veren, matematik tarihindeki en etkili çalışmalardan biridir. Elemanlar’da, Öklid, küçük bir aksiyom setinden, şimdi Öklid geometrisi olarak adlandırılan şeyin teoremlerini çıkardı. Öklid ayrıca perspektif, konik kesitler, küresel geometri, sayı teorisi ve matematiksel kesinlik üzerine eserler yazdı.

<span class="mw-page-title-main">Logaritma</span> özel tanımlı bir fonksiyon türü

Matematikte logaritma, üstel işlevlerin tersi olan bir matematiksel fonksiyondur. Mesela, 1000'in 10 tabanına göre logaritması 3'tür çünkü 1000, 10'un 3. kuvvetidir,1000 = 10 × 10 × 10 = 103. Daha genel bir ifadeyle:

Olasılık kuramında ve istatistikte, hipergeometrik dağılım sonlu bir ana kütle içinden tekrar geri koymadan birbiri arkasına n tane nesnenin çekilmesi işlemi için başarı sayısının dağılımını bir ayrık olasılık dağılımı şekilde betimler.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Sonsuz</span> matematik ve fizikte herhangi bir sonu olmayan şeyler ve sayılar

Sonsuz, eski Yunanca Lemniscate kelimesinden gelmektedir, çoğunlukla matematik ve fizikte herhangi bir sonu olmayan şeyleri ve sayıları tarif etmekte kullanılan soyut bir kavramdır.

<span class="mw-page-title-main">Mandelbrot kümesi</span>

Mandelbrot kümesi, Benoit Mandelbrot'un ikinci derece kompleks değişkenli polinomların dinamiklerini açıklamak için geliştirdiği ve incelediği kümedir. Mandelbrot kümesi, karmaşık düzlemin bir fraktal altkümesidir.

<span class="mw-page-title-main">Tesselasyon</span>

Matematikte bir döşeme, aralarında boşluk bırakmadan veya örtüşmeden bir düzlemi kaplayan düzlemsel şekiller kümesidir. Bu kavram daha yüksek boyutlar için de genellenebilir, bu genişletilmiş anlamı için döşeme yerine tesselasyon terimi kullanılır. Tesselasyon M. C. Escher'in eserlerinde sıkça görülebilir. Tesselasyona sanat tarihi boyunca, antik mimariden modern sanata kadar rastlanabilir.

<span class="mw-page-title-main">Julia kümesi</span>

Bir fonksiyonun Julia kümesi, o fonksiyonun dinamiğini incelemek için kullanılan kümedir. Karmaşık fonksiyonlar, karmaşık düzlemi kendi dinamiklerine göre iki ayrık kümeye bölerler. Bu kümeler, Julia ve Fatou kümeleridir. Fonksiyon, Julia kümesi üzerinde kaotik davranış sergilerken, Fatau kümesinde normal davranış sergiler.

<span class="mw-page-title-main">Parametre</span> belirli bir sistemi tanımlamak veya sınıflandırmak için yardımcı olabilecek herhangi bir özellik

Parametre belirli bir sistemi tanımlamak veya sınıflandırmak için yardımcı olabilecek herhangi bir özellik. Parametre, sistemi tanımlarken veya performansını, durumunu değerlendirirken yararlı veya kritik olan bir sistem unsurudur.

Matematiksel jeofizik, jeofizikteki matematiksel yöntemlerin geliştirilmesiyle ilgilidir. Bu nedenle, özellikle jeodinamik ve sismoloji başta olmak üzere jeofizikteki birçok alanda uygulamaya sahiptir.

Sinyal-gürültü oranı bilim ve mühendislikte kullanılan, istenen bir sinyalin seviyesini arka plandaki gürültü seviyesiyle karşılaştıran bir ölçüdür. SNR, sinyal gücünün gürültü gücüne oranı olarak tanımlanır, genellikle desibel cinsinden ifade edilir. 1: 1'den yüksek bir oran gürültüden daha fazla sinyal olduğunu gösterir.

Knidos'lu Eudoxus veya Knidoslu Ödoksus, antik bir Yunan astronomu, matematikçi, bilim insanı ve Archytas ile Platon'un öğrencisiydi. Hipparchus'un Aratus'un astronomi üzerine şiiriyle ilgili yorumunda bazı parçalar korunsa da tüm eserleri kaybolmuştur. Bithynialı Theodosius tarafından yazılan Sphaerics, Eudoxus'un bir çalışmasına dayanabilir.

<span class="mw-page-title-main">Geometri tarihi</span> Geometrinin tarihsel gelişimi

Geometri, mekansal ilişkilerle ilgilenen bilgi alanı olarak ortaya çıkmıştır. Geometri, modern öncesi matematiğin iki alanından biriydi, diğeri ise sayıların incelenmesi yani aritmetikti.

<span class="mw-page-title-main">Geometricilerin listesi</span> Vikimedya liste maddesi

Bir geometrici, çalışma alanı geometri olan matematikçidir.

<span class="mw-page-title-main">Ölçü (matematik)</span> uzunluk, alan, hacim ve integralin bir genellemesi olarak görülebilecek bir kümenin bazı alt kümelerine sayılar atayan işlev

Matematiksel analizde, küme üzerindeki bir ölçü, bu kümenin her bir uygun alt kümesine bir sayı atamanın sistematik bir yoludur ve sezgisel olarak kümenin boyutu olarak yorumlanır. Bu anlamda ölçü, uzunluk, alan ve hacim kavramlarının bir genellemesidir. Özellikle önemli bir örnek, Öklid geometrisinin geleneksel uzunluğunu, alanını ve hacmini n-boyutlu Öklid uzayının Rn uygun alt kümelerine atayan bir Öklid uzayındaki Lebesgue ölçüsüdür. Örneğin, gerçek sayılardaki [0, 1] aralığının Lebesgue ölçüsü, kelimenin günlük anlamındaki uzunluğudur ve tam olarak 1'dir.

Fraktal sanat, fraktal nesneleri hesaplayarak ve hesaplama sonuçlarını hareketsiz dijital görüntüler, animasyonlar ve medya ile oluşturulan bir algoritmik sanat biçimidir. Fraktal sanat, 1980'lerin ortalarından itibaren gelişmiştir. Yeni medya sanatının bir parçası olan bilgisayar sanatı ve dijital sanatın bir türüdür. Fraktalların matematiksel güzelliği, üretken sanat ile bilgisayar sanatının kesiştiği noktada yatar. Bir tür soyut sanat üretmek için birleşirler.