İçeriğe atla

Foton polarizasyonu

Foton polarizasyonu (foton kutuplanımı) klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Foton polarizasyon açıklaması fiziksel kavramlar ve çok karışık kuantum tanımlarının matematiksel mekanizmaların çoğunu içerir. Potansiyel kuyusunda bulunan bir elektronun kuantum mekaniği ve daha karmaşık kuantum olaylarının temel bir esas olarak anlaşılması buna örneklerdir. Matematik mekaniğinin çoğunu oluşturan durum vektörleri, olasılık genlikleri, üniter operatörler ve Hermityen operatörleri klasik Maxwell denklemleriyle bunu ortaya çıkarır. Foton için kuantum polarizasyon durum vektörü, örneğin, genellikle klasik bir dalganın polarizasyon tanımlamak için kullanılan Jones vektörü ile aynıdır. Üniter operatörler, klasik bir dalganın medya aracılığıyla yayılmasını, bir dalganın polarizasyon durumunu değiştirerek enerji korunumunun klasik gerekliliklerini ortaya çıkarır. Sonra, Hermityen operatörler klasik polarizasyon durumunun sonsuz dönüşümlerini izler.

Matematiksel mekaniklerin gerekliliklerinin birçoğu deneysel bir yolla kolayca doğrulanabilir. Aslında, birçok deney Polaroid gözlüğün iki çifti (ya da bir kırık çift) ile yapılabilir.

Kuantum mekaniği ile bir bağlantı, elektromanyetik alanda bir enerji için foton olarak adlandırılan minimum boyun tanımlanmasıyla yapılır. Kimlik tanımlama Planck teorileri ve Einstein tarafından bu kuramların yorumlanmasına dayanmaktadır. Haberleşme ilkesi daha sonra bir foton ile, devinirlik ve açısal devinirliğin enerjisiyle birlikte tanımlanmasına olanak sağlar.

Klasik elektromanyetik dalgaların polarizasyonu

Polarizasyon durumları

Lineer polarizasyon

Polarizenin çamur düzlüklerinden yansımasına etkisi.İlk resimde, polarize, etkisini en aza indirmek için döndürülür;ikinci resimde onu maksimize etmek için 90 ° döndürülür: hemen hemen tüm yansıyan güneş ışığı elimine edilir.

Faz açıları olan eşitken dalga lineer olarak (ya da düzlem olarak) kutuplaşmıştır.

Bu, x eksenine göre fazında bir dalganın açısıyla kutuplaşmış olduğunu gösterir. Bu durumda Jones vektörü şu şekilde yazılır;

X veya y eksenindeki lineer polarizasyon için olan durum vektörleri, bu durum vektörünün özel durumlarıdır.

Birim vektörleri şu şekilde tanımlanıyorsa;

ve

“x-y esasında” lineer olarak kutuplaşmış polarizasyon durumu şu şekilde yazılabilir;

Dairesel polarizasyon

Eğer faz açıları olan ve birbirlerinden tam olarak kadar farklılarsa ve x'in genliği y'nin genliğine eşitse, bu dalga dairesel olarak kutuplaşmıştır. Bu durumda Jones vektörü;

artı işareti sağ polarizasyonu, eksi işareti ise sol polarizasyonu gösterir. Dairesel kutuplaşma durumunda, elektrik alan vektörünün sabit büyüklüğü x-y ekseninde döner.

Birim vektörleri şu şekilde tanımlanıyorsa;

ve

"R-L esasında" gelişigüzel polarizasyon durumu şu şekilde yazılabilir;

Bu yazılımda;

ve

Bundan dolayı;

Eliptik polarizasyon

Elektrik alanı x-y düzleminde dönen ve değişken büyüklüğe sahip genel duruma eliptik polarizasyon denir. Durum vektörü şu şekilde gösterilir;

Gelişigüzel bir polarizasyon durumunun geometrik olarak görselleştirilmesi

Polarizasyon durumunun nasıl göründüğünü anlamak için polarizasyon durumu faz katsayısıyla çarpılan yörüngesi incelenebilir ve sonra reel kısımları x ve y koordinatlarına göre yorumlanabilir. Bu durum şu şekilde gösterilebilir:

Yani, polarizasyon durumu yorumlanırken (x(t), y(t)) 'nin dönüş yönü ve izlediği yol dikkate alınır.

(x(t) ve y(t) yukarıda tanımlandığı gibi.) ve genel olarak daha çok sağ dairesel veya sol dairesel olup olmamasından (bu ya |ψR| > |ψL| ya da tam tersidir.), fiziksel yorumlanmasının gelişigüzel bir faz katsayısıyla çarpılsa bile aynı olacağını gösterir. Bundan dolayı,

ve dönüş yönü aynı kalır. Diğer bir deyişle, ve polarizasyonları arasında faz katsayısı dışında fiziksel bir farklılık yoktur.

Bir doğrusal polarize durum için; x-y düzleminde bulunan, eğimi tan(θ) ve uzunluğu 2 birim ve orta noktası orijin olan M çizgisi görülebilir. Dairesel polarize durumu için, M yarıçapı 1/2 olan ve orta noktası orijinde bulunan bir çember olur.

Klasik elektromanyetik bir dalganın enerjisi, devinirliği ve açısal devinirliği

Klasik elektromanyetik dalgaların enerji yoğunluğu

Düzlem dalgasının enerjisi

Klasik elektromanyetik alanların birim hacme düşen enerjisi; (cgs birim sistemine göre)

Düzlem dalgaları için bu formül;

Enerji, dalganın dalga uzunluğu üstünde ortalanmıştır.

Her bir bileşenin enerji orantısı

Düzlem dalgasının x bileşenine göre enerji orantısı;

y bileşenine göre aynı gösterim şu şekildedir; .

İki bileşenin oranı şu şekildedir:

Klasik elektromanyetik dalgaların devinirlik yoğunluğu

Devinirlik yoğunluğu Poynting vektörü ile verilmiştir.

Z yönünde hareket eden bir sinüzodial düzlem dalgası için, devinirlik z yönündedir ve enerji yoğunluğu ile ilgilidir:

Devinirlik yoğunluğu dalga uzunluğu üstünde ortalanmıştır.

Klasik elektromanyetik dalgaların açısal devinirlik yoğunlukları

Elektromanyetik dalgalar hem yörüngesel açısal devinirliğe hem de fırıl açısal devinirliğine sahip olabilir. Toplam açısal devinirlik yoğunluğu ise aşağıdaki gibidir.

ekseni boyunca yayılan sinuzoidal düzlem dalgasının açısal devinirlik yoğunluğu kaybolur. Fırıl açısal devinirlik yoğunluğu eksenindedir ve şu şekildedir;

Yine, yoğunluk dalga boyu üstünde ortalanmıştır.

Optik filtreler ve kristaller

Klasik bir dalganın polaroid filtreden geçişi

Doğrusal Kutuplaşma

Bir lineer filtre bir düzlem dalganın bir bileşeni iletir ve dik bileşeni emer. Bu durumda, eğer filtre x yönünde kutuplaşırsa, filtreden geçen enerjinin oranı aşağıdaki gibidir.

Enerji korunumuna örnek: Klasik bir dalganın çift kırınımlı kristalden geçişi

İdeal bir çift kırınımlı kristal dalga enerjisinin kaybı olmadan bir elektromanyetik dalganın kutuplanım durumunu dönüştürür. Bu nedenle çift kırınımlı kristaller polarizasyon durumlarının korunumlu dönüşümünü incelemek için ideal bir test yatağı sağlar. Bu tedavi hala tamamen klasik olsa da, üniter ve Hermityen operatörler gibi standart kuantum araçları değişmiş durumu zaman içinde doğal olarak ortaya çıkarır.

Başlangıç ve bitiş durumları

Bir "optik eksene" sahip çift kırınımlı kristaller, kutuplu ışık bu optik eksene paralelken dik olduğundan daha farklı kırınım dizinlerine sahiptir. Kutuplu ışığın paralel olduğu eksene "sıra dışı ışınlar" veya "sıra dışı fotonlar", kutuplu ışığın dik olduğu eksenlere de "olağan ışınlar" veya "olağan fotonlar" denir. Eğer doğrusal kutuplaşmış dalgalar kristale çarparsa; dalganın sıra dışı bileşeni, olağan bileşeninden daha farklı bir fazda olan kristalden ortaya çıkar. Matematik dilinde, eğer çarpan dalga doğrusal olarak optik eksene göre açısıyla kutuplaşmışsa, çarpma durum vektörü şu şekilde yazılabilir;

ve ortaya çıkan dalganın durum vektörü şu şekilde yazılabilir;

Başlangıç durumu doğrusal olarak kutuplaşırken, son durum eliptik olarak kutuplaşır. Çift kırınımlı kristal kutuplaşma karakterini değiştirir.

Son durumun ikilisi

Çift kırılmayı göstermek için yazılı bir kağıt üzerinde bulunan kalsit kristali

Başlangıç kutuplaşma durumu operatör U'yla son duruma dönüşür. Son durumun ikilisi şu şekilde gösterilir;

U'nun bitiştirilmişidir, yani matrisin karmaşık eşlenik devriğidir.

Bütün operatörler ve enerji korunumu

Kristalden çıkan enerji oratısı şu şekildedir;

Bu ideal durumda, bütün kristale çarpan enerjiler kristalden ortaya çıkar. U işlemcisi şu özelliğe sahiptir;

Formüldeki I kimlik operatörüdür, U ise bütün operatörüdür. Bütünlük özelliği enerji korunumunu durum dönüşümlerinde sağlamak açısından gereklidir.

Hermityan işlemcileri ve enerji korunumu

Dixon, New Mexico'dan çifter yansılamlı Kalsit. Bu kristal 16 kilogram ağırlığındadır ve National Museum of Natural History 'de sergilenmektedir.

Eğer kristal çok inceyse, son durum başlangıç durumundan çok az bir farklılık gösterir. Bütün işlemcisi kimlik işlemcisini kapatır. H işlemcisi şu şekilde tanımlanabilir;

ve bitiştirilmişi şu şekildedir;

Enerji korunumu sonrasında şunu gerektirir;

Bu ise aşağıdakini gerektirir

Bitiştirilmişine eşit olan işlemcilere Hermityan ya da kendinden bitiştirilmiş denir.

Kutuplaşma durumunun mini geçişi şu şekildedir;

Bu nedenle, enerji korunumu Hermityan işlemcisinde gerçekleşen kutuplaşma durumunda mini geçiş gerektirir.

Fotonlar: Kuantum mekaniği ile bağlantı

Fotonların enerjisi, devinirliği ve açısal devinirliği

Enerji

Bu kısma kadar olan işleyiş klasik fiziğe aittir. Elektrodinamik için olan Maxwell denklemleri, klasik niceliklerin tekrar yorumlanmasıyla kuantum mekaniğine uygulanabilir. Bu tekrar yorumlama Max Planck'in teorilerini baz alarak ve Albert Einstein'ın yorumlamalarını göz önünde bulundurarak olabilir.

Einstein ışılelektrik etkisiyle ilgili ilk deneylerini, elektromanyetik radyasyonun indirgenemez enerji paketlerinden oluştuğunu ve bu enerji paketlerini foton (ışıl) olarak tanımlayarak sonuçlandırmıştır. Her bir paketteki enerji dalganın açısal frekansıyla ilişkilidir. Bu ilişki aşağıdaki gibidir.

Bu denklemdeki Planck sabiti olarak tanımlanmıştır.Eğer adet foton hacminde bulunuyorsa, elektromanyetik alandaki enerji;

ve enerji yoğunluğu;

Bir fotonun enerjisi haberleşme prensibince klasik alanlarla ilgilidir. Haberleşme prensibi çok sayıda foton için kuantum ve klasik fizik yasalarının uymasını gerektirir. Bu nedenle, çok sayıda için, kuantum enerji yoğunluğu ve klasik enerji yoğunluğu aynı olmalıdır.

Öyleyse, kutu içindeki fotonların sayısı;

Devinirlik

Haberleşme yasası ayrıca bir fotonun devinirlik ve açısal devinirliğini belirler. Devinirlik için;

Bu denklemde kz dalga numarasıdır. Bu bir fotonun devinirliğini şu şekilde belirtir;

Açısal devinirlik ve fırıl

Fırıl açısal momentumunda da olduğu gibi;

Bu formülde Ec alan gücünü gösterir. Bu denklemden, bir fotonun fırıl açısal devinirliği şu şekilde açıklanır;

Fırıl işlemcisi

Fotonun fırılı, fırıl açısal devinirlik hesaplamalarında 'ın katsayısı olarak tanımlanmıştır. Eğer bir foton durumunda ise bu fotonun fırılı 1dir ve bu foton durumunda ise fırılı -1dir. Fırıl işlemcisi dış çarpım olarak tanımlanmıştır.

Bir fırıl işlemcisinin özvektörleri ve 'dır ve sırasıyla özdeğerleri 1 ve -1dir.

Bir fotonun fırıl ölçümlerinin beklenen değeri şu şekildedir;

İşlemci S gözlenebilir bir nicelik olan fırıl açısal devinirliği ile ilişkilidir. İşlemcinin özdeğerleri gözlenebilir değerlerin bulunmasına yardımcı olur. Bu fırıl açısal momentum için gösterilmiştir fakat genellikle her gözlenebilir nicelik için doğrudur.

Fırıl durumları

Dairesel kutuplaşma durumları şu şekilde yazılabilir;

Bu denklemdeki s=1

ve bu denklemde s= -1

Rastgele durum şu şekilde yazılabilir;

Bu denklem için;

Diferansiyel biçimde fırıl ve açısal momentum işlemcileri

Durum fırıl belirtkesinde yazıldığında, fırıl işlemcisi şu şekilde yazılır;

Diferansiyel fırıl işlemcisinin özvektörleri şu şekildedir:

ve

Fırıl açısal momentum işlemcisi ise şu şekildedir:

Kuantum mekaniğinde olasılığın doğası

Tek foton için olasılık

Olasılığın fotonların davranışlarına uygulanabildiği iki yol vardır; olasılık belirli bir durumdaki muhtemel sayıda fotonları hesaplamada kullanılabilir ya da belirli bir durumdaki tek bir fotonun olasılığını hesaplamada kullanılabilir. Eski yorumlama enerji yasasını ihlal ediyordu. Sonraki yorumlamalar ise eğer seçenek sezgisel değilse geçerlidir. Dirac bunu çift-yarık deneylerinin içeriğinde açıklamıştır.

Olasılık genlikleri

Belirli bir kutuplaşma halinde olan bir foton için olasılık klasik Maxwell denklemleri ile hesaplanabilir. Fotonun kutuplaşma durumu alanı ile orantılıdır. Olasılığın kendisi alanlarda ikinci derecedendir ve buna bağlı olarak da kutuplaşma kuantum halinde ikinci derecedendir. Kuantum mekaniğinde, bu nedenle, durum ya da olasılık genliği temel olasılık bilgileri içerir. Genel olarak, olasılık genliklerinin birleştirilmesi için olan kurallar klasik kurallardakine çok benzerdir.

Belirsizlik prensibi

Öklit düzleminde Cauchy-Schwarz eşitsizliği. Bu;

'dır.

Matematiksel hazırlık

Herhangi bir resmi işlemci için Cauchy-Schwarz eşitsizliğinin sonucu olan aşağıdaki eşitsizlik doğrudur.

Eğer B A ψ ve A B ψ tanımlanırsa;

bu denklemde;

ve

Bu

A ve B'nin çeviricisi olarak adlandırılır.

Bu tamamiyle matematiksel bir sonuçtur. Hiçbir fiziksel nicelik veya yasayla ilgisi yoktur. Bu sadece durum üzerine etki eden bir işlemcinin belirsizliğinin başka bir işlemcinin belirsizliğiyle çarpımının illaki sıfır olmamasını gösterir.

Açısal devinimin uygulaması

Eğer işlemciyi açısal devinim ve kutuplaşma açısıyla tanımlarsak fizik ile ilişkisini bulabiliriz:

bu basitçe açısal devinim ve kutuplaşma açısının sınırsız kesinlik ile eşzamanlı olarak ölçülemeyeceğini gösterir.

Durumlar, olasılık genlikleri, bütün ve Hermityan işlemciler ve özvektörler

Kuantum mekaniğinin birçok matematiksel aygıtı, kutuplaşmış bir sinüzoidal elektromanyetik dalganın klasik açıklamasında da görünür. Klasik bir dalga için Jones vektör, örneğin, bir foton için kuantum kutuplaşma durum vektörü ile aynıdır. Jones vektörünün sağ ve sol dairesel bileşenleri fotonun fırıl hallerinin olasılık genlikleri olarak yorumlanabilir. Enerji korunumu durumların üniter işlemciyle donüşmesini gerektirir. Bu, son derece küçük dönüşümler Hermityen işlemcileriyle dönüşenilir demektir. Bu sonuçlar, klasik dalgalar için Maxwell denklemlerinin yapısının doğal bir sonucu olduğunu gösterir.

Gözlenen nicelikler ölçüldüğünde ve sürekli olmak yerine ayrık olduğunda, kuantum mekaniği devreye girer. Izin verilen gözlemlenebilir değerleri işlemcilerin özdeğerlerinin gözlenebilirle ilişkisinde bulunabilir. Açısal devinim durumunda, örneğin, izin verilen gözlemlenebilir değerler spin işlemcisinin özdeğerleridir.

Bu kavramlar Maxwell denklemleri ve Planck ile Einstein'ın teorilerinden ortaya çıkmıştır ve başka fizik sistemlerinde de doğru bulunmuşlardır. Aslında, tipik program, bu bölümün kavramlarını varsaymak ve daha sonra fiziksel bir sistemin bilinmeyen dinamiklerini anlaması içindir. Bu, elektron hareketliliği için uygulandı. Bu durumda, bu bölümdeki esaslara tekrar baktığımızda, Schrödinger'in denklemine katkıda bulunduğunu görürüz. Atomlar için bu denklemin çözümü, atom spektrumları için Balmer serisine açıklama getirdi ve dolayısıyla atom fiziği ve kimya için birer temel oluşturmuş oldu.

Bu Maxwell denklemlerinin Newton mekaniğinin yeniden bir yapılandırmaya zorlamasının tek nedeni değildir. Maxwell denklemleri izafi olarak tutarlıdır. Özel görelilik Maxwell denklemlerinin klasik mekaniği tutarlı yapmak için girdiği girişimlerin sonucudur.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

<span class="mw-page-title-main">Gabor Filtresi</span>

Bir Gabor filtresi, harmonik bir fonksiyon ile Gaussian bir fonksiyonunun çarpımından oluşan lineer bir filtredir.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

Kuantum harmonik salınıcı, klasik harmonik salınıcın benzeşiğidir. Rastgele seçilmiş potansiyeli denge noktası civarında harmonik potansiyele yakınsanabildiğinden nicem mekanğindeki en önemli model sistemlerden biridir. Dahası, nicem mekaniğinde kesin analitik çözümü olan çok az sistemden biridir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Schrödinger gösterimleri, fizikte, kuantum mekaniğinin bir formülasyonudur. Öyle ki durum vektörleri zaman içinde değişir, ancak operatörler zamana göre sabit kalır. Bu Heisenberg gösteriminden ve etkileşim tasvirden farklıdır çünkü Heisenberg gösteriminde durum vektörleri zaman içinde durumlarını sabit tutarken gözlemlenebilir operatörler değişir ve etkileşim tasvirinde durum vektörleri ve gözlenebilir operatörlerin ikisi de zaman içinde değişir. Schrödinger ve Heisenberg gösterimleri aktif ve pasif dönüşümler gibi birbirleriyle ilişkilidir ve aynı ölçüm istatistiklerine sahiptirler.

Fizikte, Kuantum mekaniğinde, eşevreli hal klasik harmonik salıngaca benzeyen kuantum harmonik salıngacının nicel hareketidir. Kuantum dinamiğinin Erwin Schrödinger tarafından Scrödinger denklemlerine çözüm ararken 1926 yılında türetilen ilk örneğidir. Örneğin, eşevre hali parçacığın salınımsal hareketini açıkları. Bu haller, John R. Klauderin ilk makalelerinde alçalma operatörü ve fazla tamamlanmış aile teşkili olarak özvektör adında tanımlanmıştır. Eşevre halleri,[ışığın kuantum kuramında ve diğer bozonik kuantum alanlarında Roy J. Glauber’in 1963 yılındaki çalışmaları tarafından geliştirilmiştir. Salınan alanın eşevre hali, klasik sinüs dalga hareketine benzeyen, devamlı lazer dalgası gibi olan kuantum halidir. Ancak, eşevre hali kavramı kayda değer biçimde genellenmiş ve sinyal sürecini niceleme, görüntü işleme alanlarında matematiksel fizikte ve uygulamalı matematik oldukça geniş ve önemli bir konu olmuştır. Bu hususta, kuantum harmonik salıngacı ile bağlantılı eşevreli haller genel olarak standart eşevreli haller ya da Gauss işlevi halleri olarak anılır.

Polimer fiziği, sırasıyla polimerleri, onların dalgalanmalarını, mekanik özelliklerini ve ek olarak polimer ve monomerlerin bozulma ve polimerleşme gibi kinetik reaksiyonlarını inceleyen fizik dalıdır. Yoğun madde fiziği perspektifine odaklanmış olsa da polimer fiziği aslen istatistiki fiziğin bir dalıdır. Polimer fiziği ve polimer kimyası da polimerlerin uygulanabilir bölümlerini inceleyen polimer biliminde birbirleriyle alakalıdır. Polimerler büyük moleküller oldukları için deterministik metot kullanarak çözümü oldukça karmaşıktır. Fakat istatistiki yaklaşımlar sıklıkla geçerli sonuçlar verebilir çünkü büyük polimerler sonsuz sayıdaki monomerlerin termodinamik limitiyle verimli bir şekilde tarif edilebilir Termal dalgalanmalar sıvı çözeltinin içindeki polimerlerin şekline sürekli etki eder ve bu etkiyi modellemek istatistiki mekanik ve termodinamiğin yardımını gerektirir. Doğal olarak, sıcaklık faz değişimleri erime ve başka birçok şeye neden olarak çözelti içindeki polimerlerin fiziksel davranışlarına güçlü bir şekilde etki eder Polimer fiziği için istatistiksel yaklaşım bir polimerle Brown Devinimi ya da tesadüfi hareket, öz-kaçınmalı hareket tiplerinden birinin benzerliği üzerine kuruludur. En basit polimer zincir modeli tesadüfi harekete denk gelen ideal zincir şeklinde sunulmaktadır. Polimerleri karakterize etmek için deneysel yaklaşımlar ayrıca yaygındır. Büyüklük dışlanımlı kromatografi, viskometri, dinamik ışık saçılımı ve polimerleşme reaksiyonlarını otomatik sürekli çevrimiçi gözetleme metotlarını kullanan polimer karaktarizasyon metotları polimerlerin kimyasal fiziksel ve maddesel özelliklerinin tayini için kullanılabilir. Bu deneysel metotlar ayrıca polimerlerin matematiksel olarak modellenmesine yardımcı olur daha fazlasıyla polimerlerin özelliklerinin daha iyi anlaşılmasını sağlar.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.