İçeriğe atla

Foton gazı

Fizikte, foton gazı, fotonların gaz benzeri birikmesidir ki hidrojen ve neon gibi sıradan gazlarla basınç, sıcaklık, entropi gibi benzer özelliklere sahiptir. Foton gazının dengedeki en yaygın örneği siyah cisim ışımasıdır.

Tek tip elementten oluşan ideal gaz sıcaklığına, hacmine ve parçacık sayısını göre kesin olarak tanımlanabilir. Lakin, siyah cismin enerji dağılımı genelde kabın duvarlarıyla etkileşimiyle dengeli bir şekilde olur.Bu etkileşimde foton sayısı korunmaz. Sonuç olarak, siyah cisim foton gazının kimyasal potansiyeli sıfırdır. Siyah cismin hâlini tanımlamak için gerekli olan hâl fonksiyonu üçten ikiye düşer (örneğin sıcaklık ve hacim).

Siyah cisim foton gazının termodinamiği

Büyük parçacıklı gazda, parçacıkların enerjisi Maxwell-Boltzmann dağılımına göre dağılır. Bu dağılım parçacıklar birbiriyle çarpıştıkça gerçekleşir ve enerjiyi (momentum) değiştirir. Foton gazında da denge dağılımı olur, ancak fotonlar birbirleriyle çarpışmazlar, (çok üst düzey koşullar hariç, bakınızİki-foton fiziği) yani denge değişimi diğer değerlere göre sağlanır. Denge dağılımının en yaygın yolu fotonun maddeyle etkileşimidir. Eğer foton gazı, foton gazı bulunduran ve duvarları belirli bir sıcaklıkta olan bir sistem tarafından emilmiş ise foton gazının denge dağılımı aynı sıcaklıkta olur.

Büyük parçacıklı gaz ve siyah cisimli foton gazı dağılımının en büyük farklı sistemdeki foton gazının korunmuyor oluşudur. Foton duvardaki bir elektronla çarpışıp foton gazından foton kopartarak elektronun enerji seviyesini yükseltebilir. Bu elektron tekrar eski seviyesine adım adım dönebilir ve her adımda foton gazına birer foton salar. Yayılan fotonların toplam enerjisi emilen fotonun enerjisine olmasına rağmen yayılan foton sayısı değişir. Bu sistemdeki fotonların sayısı üzerindeki kısıtlama eksikliğinin sonucu olarak gösterilebilir çünkü fotonların kimyasal potansiyelinin siyah cisim ışıması için sıfır olmak zorundadır.

Siyah cisim foton gazının termodinamiği mekanik kuantum argümanları kullanılarak elde edilebilir. Bu formül, tayfsal enerji dağılımına olan u'ya bağlıdır ki bu da enerji bölü hacim ve frekans aralığına eşittir. Planck yasası bu durumu matematiksel olarak şu şekilde tanımlar:

.

burada   Planck sabiti,  ışık hızı, ν  frekans ,  Boltzmann sabiti ve T  sıcaklıktır. Frekansı entegre edip ve hacimle (V ) çarparak siyah cisim foton gazının iç enerjisini buluruz.

.

Bu formül foton sayısına ( N )bağlı olarak da bulunabilir:

,

burada  Riemann zeta işlevdir. Belirli bir sıcaklıkta, parçacık sayısı N, hacimle sabit biçimde, sabit bir foton yoğunluğuna ulaşmak için kendisini ayarlayarak değişir.

Eğer ışık hızına yakın kuantum gazının (doğal foton tanımı) hal denklemini aşağıdaki gibi yazarsak,

,

yukarıdaki formüllerle birleştirip ideal gazın hal denklemine benzeyen bir denklem elde edebiliriz:

.

Aşağıdaki tablo termodinamik hal fonksiyonlarının siyah cisim foton gazına göre özetlemiş hâlidir. Basıncın , şeklinde yazılabildiğine dikkat edin. Hacimden bağımsız bir halde (b bir sabittir).

Siyah cisim foton gazına göre termodinamik hal fonksiyonları
Hal fonksiyonu (T,V)
İç enerji
Parçacık sayısı
Kimyasal potansiyel
Basınç
Entropi
Entalpi
Helmholtz serbest enerjisi
Gibbs serbest enerjisi

İzotermal değişimler

Foton gazı içeren termodinamik işleme örnek olarak, hareketli pistonlu silindir varsayalım. Silindirin iç duvarı belirli bir sıcaklığı koruması için "siyah"dır. Yani. silindirin içindeki boşluk siyah cisim dağıtılmış foton gazı içermektedir. Büyük parçacıklı gazın aksine,bu gaz dışarıdan foton getirmeden de var olacaktır - duvarlar gazı fotonlardan koruyacaktır. Varsayalım ki, silindir içinde çok küçük bir hacmi kalana kadar piston tarafından sıkıştırılmıştır. Foton gazı pistona baskı yapacak, dışarı itecek ve değişimin izotermik olması için karşı kuvvet neredeyse aynı olacaktır ki pistonun hareketi çok yavaş olsun. Bu kuvvet basınçla pistonun kesit alanı çarpımına eşit olacaktır. Bu işlem foton gazı V0  hacmine gelene kadar sabit sıcaklıkta gerçekleşebilir. Kuvveti mesafe (x )üzerine entegre edilmesi ve V=Ax ilişkisinin kullanıldığı

hacimde yapılması gereken işi verir. 

Tanımlama

Basınç:

İş:

Gazı yaratmak için kullanılması gereken ısı miktarı:

H0 değişimin sonundaki entalpidir. Entalpinin foton gazı yaratmak için gerekli enerji miktarı olduğu görülmüştür.

Ayrıca bakınız

Kaynakça

İlgili Araştırma Makaleleri

Planck sabiti (h), bir fizik sabitidir ve kuantum mekaniğindeki aksiyonum kuantumu için kullanılır. Değeri h= 6.62607015×10−34 J⋅s' dir. Planck sabiti daha önceleri bir Fotonun enerjisi (E) ile elektromanyetik dalgasının frekansı (ν) arasında bir orantı idi. Enerji ile frekans arasındaki bu ilişki Planck ilişkisi veya Planck formülü olarak adlandırılır:

Benzinli motorda, yanma sabit hacimde gerçekleşir, dizel motorda ise yanma sabit basınçta gerçekleşir. Karma çevrimde ise günümüz modern dizel motorlarında olduğu gibi, yanmanın ilk aşaması sabit hacime yakın, son aşaması ise sabit basınca yakın gerçekleşmektedir. Bu yüzden ısının bir miktarının sabit hacimde, geri kalan kısmının da sabit basınçta sisteme verildiği bu çevrime karma çevrim denir.

Sabit hacim çevrimleri, buji ile ateşlemeli motorlarda kullanılan, ateşlemenin piston üst ölü noktaya geldiği ve sıkıştırma sonu basıncının en üst seviyeye çıktığı anda bujilerden kıvılcım çaktırılarak yapılan bunun sonucunda da pistonu aşağıya iten maksimum basıncın elde edildiği çevrimlerdir. Sabit basınç ya da dizel çevrimlerinden farkı ateşleme sabit bir hacimde yapılması ve buji kullanılmasıdır. Sabit hacim derken, dizel çevrimlerinde olduğu gibi piston aşağıya doğru inerken sisteme ısı girişi yapılmamaktadır.

<span class="mw-page-title-main">Genleşme</span> Genleşen cisim hacmi artacağından dolayı yüzer.

Genleşme, sıcaklığı artırılan bir cismin uzunluk ya da hacminin değişmesi olayıdır.

<span class="mw-page-title-main">Kütle merkezi</span>

Fizikte, uzaydaki ağırlığın dağılımının ağırlık merkezi, birbirlerine göre olan ağırlıkların toplamlarının sıfır olduğu noktadır. Ağırlık dağılımı, ağırlık merkezi etrafında dengelenir ve dağılan ağırlığın kütle pozisyon koordinatlarının ortalaması onun koordinatlarını tanımlar. Ağırlık merkezine göre formüle edildiği zaman mekanikte hesaplamalar basitleşir.

Apéry sabiti, matematiğin gizemli sayılarından biridir. Elektrodinamik alanında elektronun jiromagnetik oranının ikinci ve üçüncü derece terimlerinin yanı sıra birçok fiziksel soruda karşılaşılan bu sabit, paydasında üstel fonksiyon barındıran integrallerin çözümünde de kullanılmaktadır. Debye modelinin iki boyut için hesaplanması buna örnek olarak gösterilebilir. Sayı, aşağıdaki gibi tanımlanmaktadır.

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

<span class="mw-page-title-main">Enerji biçimleri</span>

Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.

<span class="mw-page-title-main">Kara cisim ışınımı</span> opak ve fiziksel yansıma gerçekleştirmeyen siyah cisimden yayılan ve sabit tutulan tekdüze ısı

Siyah cisim ışıması içinde elektromanyetik ışıma ya da çevresinde termodinamik dengeyi sağlayan ya da siyah cisim tarafından yayılan ve sabit tutulan tekdüze ısıdır. Işıma çok özel bir spektruma ve sadece cismin sıcaklığına bağlı olan bir yoğunluğa sahiptir. Termal ışıma, birçok sıradan obje tarafından kendiliğinden yayılan bir siyah cisim ışıması sayılabilecek türden bir ışımadır. Tamamen yalıtılmış bir termal denge ortamı siyah cisim ışımasını kapsar ve bir boşluk boyunca kendi duvarını yaratarak yayılır, boşluğun etkisi göz ardı edilebilecek kadar küçüktür. Siyah cisim oda sıcaklığında siyah görünür, yaydığı enerjinin çoğu kızılötesidir ve insan gözü ile fark edilemez. Daha yüksek sıcaklıklarda, siyah cisimlerin özkütleleri artarken renkleri de soluk kırmızıdan kör edecek şekilde parlaklığı olan mavi-beyaza dönüşür. Gezegenler ve yıldızlar kendi sistemleri ve siyah cisimler ile termal dengede olmamalarına rağmen, yaydıkları enerji siyah cisim ışımasına en yakın olaydır. Kara delikler siyah cisim olarak sayılabilirler ve kütlelerine bağlı bir sıcaklıkta siyah cisim ışıması yaptıklarına inanılır . Siyah Cisim terimi, ilk olarak Gustav Kirchhoff tarafından 1860 yılında kullanılmıştır.

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

<span class="mw-page-title-main">Joule genişlemesi</span>

Joule genişlemesi termodinamikte (ısıdevinimsel) geri dönülmez (tersinemez) bir süreçtir. Burada ısısal olarak yalıtılmış bölmeli kabın bir tarafına belli bir hacimde gaz konur, kalan diğer tarafı ise boşaltılmıştır. Kabın ortasındaki engel kaldırılır ve bir taraftaki gaz tüm kaba yayılır.

Isıl ışınım maddedeki yüklü parçacıkların ısıl hareketiyle meydana gelmiş elektromanyetik ışınımdır. Isısı mutlak sıfırdan büyük olan her madde ısıl ışınım yayar. Isısı mutlak sıfırdan büyük olan maddelerde atomlar arası çarpışmalar, atomların ya da moleküllerin kinetik enerjisinde değişime neden olur.

<span class="mw-page-title-main">Planck yasası</span> belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eden terim

Planck yasası belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eder. Yasa 1900 yılında Max Planck bu ismi önerdikten sonra isimlendirilmiştir. Planck yasası modern fiziğin ve kuantum teorisinin öncül bir sonucudur.

Gibbs-Helmholtz denklemi Sıcaklık'ın bir fonksiyonu olarak bir sistemin Gibbs enerjisi içindeki değişikliklerini hesaplamak için kullanılan termodinamik denklemdir. Adını Josiah Willard Gibbs ve Hermann von Helmholtz'den almıştır.

<span class="mw-page-title-main">Isı sığası oranı</span>

Termal fizik ve termodinamikte, ısı sığası oranı, adyabatik indeks ya da Poisson sabiti, sabit basınçtaki ısı sığasının (CP) sabit hacimdeki ısı sığasına oranıdır (Cv). Bazen izantropik yayılma faktörü olarak da bilinen oran ideal gazlarda γ (gama) gerçek gazlarda κ (kappa), ile gösterilir. Gama sembolü havacılıkta ve kimya mühendisliğinde kullanılır.

<span class="mw-page-title-main">Debye modeli</span>

Termodinamik ve katı hal fiziğinde Debye modeli; Peter Debye tarafından 1912 yılında geliştirilen, katılarda özgül ısıya (ısı kapasitesi) olan fonon katkısını tahmin etmek için kullanılan metottur. Atomik kristal yapının salınımlarını, bir kutu içerisindeki fononlar gibi düşünerek ele alır. Bu; katıya ayrı ayrı kuantum harmonik osilatörlerden oluşmuş olarak davranan Einstein modelinin tam tersidir. Debye modeli;  – Debye T3 yasası - ısı kapasitesini düşük sıcaklıklarda doğru bir şekilde tahmin eder., düşük sıcaklıklarda olan. Tıpkı Einstein modeli gibi, yüksek sıcaklıklarda Dulong–Petit Yasasını da doğru bir şekilde kapsar. Ama, ara sıcaklıklarda basitleştirmek için yapılan varsayımlar nedeniyle doğruluğu kusurludur.

<span class="mw-page-title-main">Doğrudan ve dolaylı bant aralığı</span>

Doğrudan ve dolaylı bant aralığı yarı iletken fiziğinde iki bant aralığı tiptir. Hem iletim bantındaki minimum enerji durumu, hem değerlik bantındaki maksimum enerji durumu, Brillouin bölgesinde belirli bir kristal momentumu (k-yöney) ile karakterize edilir. K-yöneyleri aynı ise, buna "doğrudan bant aralığı" denir. Eğer farklısa, “dolaylı bant aralığı” denir. Elektronların ve deşiklerin kristal momentumu, hem iletim bandında hem de değerlik bantında aynı ise, bant aralığı "doğrudan bant aralığı" olarak adlandırılır; elektron doğrudan foton yayabilir. Bir "dolaylı bant aralığında", bir foton yayıla bilinmez, zira elektron bir ara durumdan geçmeli ve momentumu kristal kafesine aktarmalıdır. Doğrudan bant aralıklı malzeme örnekleri, InAs, GaAs gibi bazı III-V materyallerini içerir. Dolaylı bant aralıklı malzemeleri Si, Ge içerir. Bazı III-V materyalleri de, örneğin AlSb gibi dolaylı bant aralıklıdır.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi: