İçeriğe atla

Foton

Foton
Lazer ışını ile deney yapan bilim insanı
BileşimTemel parçacık
AileBozon
Etkileşim(ler)Elektromanyetik
Sembolγ, h ν ya da ħ ω
TeorileştirmeAlbert Einstein
Kütle<1×10−18 eV/c^2
Ortalama yaşam süresiSabit[1]
Elektrik yükü0
Spin1

Foton, (Grekçe: φῶς, φωτός (phôs, phōtós) 'ışık') Modern Fizik'te ışık, radyo dalgaları gibi elektromanyetik radyasyonu içeren Elektromanyetik Alan kuantumu yani ışığın temel birimidir. Ayrıca, Elektromanyetik Kuvvet'lerde kuvvet taşıyan, kütlesiz (ya da duru kütlesi=sıfır kabul edilen) temel parçacıktır. Parçacık terimi; genelde kütlesi olan veya ne kadar küçük olursa olsun bir cismi var olan anlamıyla kullanılır. Ancak, fotonlar için kullanılırken "en küçük enerji yumağı"nı temsil eden bir birimi ifade eder. Fotonlar Bozon sınıfına aittir. Kütlesiz oldukları için boşluktaki hızı 299.792.458 m/s (veya 299.792 km/s) dir.

Kuvvet etkileri hem mikroskobik ölçülerde, hem de makroskobik ölçülerde gözlemlenebilir. Foton herhangi bir duru kütleye sahip değildir ve bu durum uzak mesafelerde etkileşimlere izin vermektedir. Diğer bütün temel parçacıklar gibi foton da Kuantum mekaniğine dahildir ve dalga parçacık ikiliği gösterir. Bu durum fotonun hem dalga hem de parçacık özelliği gösterdiğini gösterir. Örnek olarak herhangi bir foton bir mercek tarafından kırılıma uğrayabilir veya dalga girişimi özelliği gösterebilirken ayrıca sayısal kütlesi ölçüldüğünde parçacık gibi davranabilir.

Foton'un modern kuramı Albert Einstein tarafından açıklanmıştır. Einstein, gözlemlerine göre klasik ışık dalga modelinin yetersizliği üzerine foton modeline gerek duymuştur.

Foton davranışlarını gözlemlemek için yapılan "Çift Yarık Deneyi" fotonların dalga mı yoksa tanecik davranışı mı gösterdiği tartışmalarını zirveye çıkarmıştır. Bu deneyin en çarpıcı sonucu deney ölçüm yapılmadan gerçekleşirse dalga modeline, ölçüm yapılırsa tanecik modeline göre hareket etmesi olmuştur.

Fotonlar

Işığın parçacıklardan oluştuğu fikrini ilk kez Isaac Newton ortaya koydu. Sonraları ışığın dalgalardan oluştuğu düşüncesi yayıldı. Ancak, Max Planck bazı deneylerinde ışığın tanecikmiş gibi davrandığını fark etti. Işık sanki devamlı dalgalar değil de, enerji paketçikleri gibi geliyordu. Einstein ve Planck bu enerji paketlerini ışık kuantumu veya foton olarak adlandırdılar. Fotonlar sanki birer parçacıklarmış gibi davranıyordu. Relativite (izafiyet) teorisine göre, bir parçacığın ışık hızında gidebilmesi için kütlesinin sıfıra eşit olması gerekiyordu. Demek ki ışığın enerjisi sadece kinetik enerjiydi; kütlesinden kaynaklanan hiçbir enerjisi yoktu. Einstein o güne dek açıklanamamış olan fotoelektrik olayını bu kavramla açıkladıktan sonra, bilim adamlarının ağzında yeniden 'ışık nedir?' sorusu gündeme gelmişti. Işığın bazı özellikleri sadece dalga olgusu (mantığı) ile açıklanırken (girişim veya kırınım gibi), bazı özellikleri ise sadece foton konsepti ile açıklanabiliyor (Fotoelektrik olay veya atomların enerji soğurması ve salması gibi).

Foton nedir?

Fotonun en bariz özelliklerini şöyle sayabiliriz: Durgun kütlesi sıfırdır; ışık hızıyla gider; ışık hızıyla gittiği için fotonlar için zaman durgundur; etkileşimlere parçacık olarak girebilir ancak dalga olarak yayılır; E=h x f, p=h/l ve E=pc bağıntılarına uyar; kütlesi sıfır olduğu halde, diğer parçacıklar gibi kütle çekiminden etkilenir. zamandan etkilenmediği için evrim geçirmeyen tek maddedir (ışık hızında giden diğer maddelerle birlikte)

  •  : enerji miktarı
  •  : Planck sabiti
  • : frekans

Işık dalga özelliklerine de sahiptir. Etkileşimlere parçacık olarak girebilir ancak dalga olarak yayılır.

Fotonlar kütleçekiminden neden etkilenir?

Fotonların kütleçekiminden etkilenme nedeni, kütleçekiminin kütleli cisimler etrafındaki uzay-zaman dokusunu bükmesidir. Işık da bu uzay-zaman içinde hareket eden bir dalga/parçacık olduğu için, bükülen uzay zaman dokusundan etkilenir.[2]

Fotonlar ışık hızından başka bir hızda gidebilir mi?

Maxvell denklemlerini çözdüğümüz zaman elektrik ve manyetik alanın birbirini sonsuza kadar besleyeceği bir hız değerine ulaşırız. Bu değer sadece iki sabite bağlıdır ε0 boş uzayın elektrik alana karşı gösterdiği direnç ve μ0 boş uzayın manyetik alana karşı gösterdiği direnç. Bunlar evrenin dokusundan kaynaklı değerler olduğu için bütün evrende bu hız değeri aynıdır (başka evrenlerde veya evrenimizin dışında farklı değerler alabilir).

Bu hızın değeri saniyede 299.792.458 metredir yani ışık hızı. Maxvell bu formül ile ışığın bir elektomanyetik dalga olduğunu göstermiştir.

Bütün elektromanyetik dalgalar evrenin dokusundan kaynaklı belirli bir hız ile gitmek zorundalardır (ışık hızı) eğer bunun dışında bir hızla gidecek olsalar elektromanyetik dalga olmaktan çıkıp enerjilerini kaybederlerdi.

Bir araba 100 kilometre/saniye hıza anında ulaşmaz. 5 km/h, 20 km/h 50 km/h gibi süreğen bir artış gösterir ama ışık kaynaktan çıktıktan sonra anında ışık hızına ulaşır süreğen bir artış göstermez.

70 km/h hızla giden bir arabadan geriye doğru 20 Km/h hızla bir top fırlatırsak topun hızı 50 km/h olur ama 0.5 c hızla giden bir uzay gemisinden geriye doğru ışık tutarsak bu ışığın hızı 0.5 c değil c olur ışık hızı göreli sistemlerden bağımsız olarak tek bir hızda gider.

e0 = 8.854 187 817... × 10−12 F·m−1 (metre başına farad).

µ0 = 4π × 10−7 N A−2

Tarihçe

19. yüzyılda en çok tartışılan konulardan biri, ışığın parçacık mı yoksa dalga mı olduğu sorusuydu. James Clerk Maxwell'in elektromanyetik kuramı ve Hertz'in deneylerinden sonra ışığın dalga olduğu kabul edilmeye başlandı. Ancak bazı deneyler ışığın dalga olduğu gözlemiyle uyuşmuyordu. Karacisim ışıması hakkında Rayleigh ile Jeans'in kurduğu teori bunun zirveye çıktığı yerlerden biriydi. Rayleigh ve Jeans dalga yaklaşımını kullanarak, belli bir sıcaklığa sahip bir cismin etrafa hangi dalga boyunda ne kadar ışıma yapacağını hesaplamaya çalıştılar. Buldukları sonuç, uzun dalga boylarında deneylerle uyumluydu ama düşük dalga boylarında çok büyük bir sapma gösteriyordu. Teorileri, dalga boyu küçüldükçe, yapılan ışımanın sonsuza gideceğini söylüyordu (bu yüzden buna morötesi felaketi denir). Daha sonra Max Planck, ışık dalga olarak değil de enerji paketçikleri olarak düşünülürse bu problemin aşılabileceğini fark etti (bu, Max Planck'a 1918 Nobel Fizik Ödülü'nü kazandırmıştır). Daha sonra Arthur Compton tarafından açıklanan Compton saçılması olayı ve Albert Einstein'ın açıkladığı Fotoelektrik olay ışığın parçacık yapısını ortaya çıkardı. Fakat girişim ve kırınım deneyleri gibi başka deneyler de ancak ışığın dalga olduğu varsayıldığında açıklanabilmektedir. Şu anda kabul edilen ışığın ikili bir yapısı olduğu ve hem parçacık hem dalga özelliği gösterdiğidir (daha sonraki deneyler bütün maddelerin böyle olduğunu göstermiştir).

Fotonik kristaller

Fotonun momentumu

Işık hızında ilerleyen bir taneciğin momentumu:

Momentumun tam formülü dir. Bu formüle göre hız ışık hızına yaklaştıkça payda sıfıra ve momentum sonsuza yaklaşır. Hız(v) ışık hızına ulaşıldığında payda sıfır ve momentum sonsuz olur yani ışık hızına çıkmak için kütle(m) sonsuza gitmeli bunun için de sonsuz enerji gerekmektedir.

Işık hızına ulaşmak için ise sonsuz momentum gerekmez. fotonların kütlesi(m) sıfır olduğu için çıkar ve belirsizliği ortadan kaldırıldığında fotonun momentumu bulunur, kütlesi olan hiçbir cisim ışık hızına çıkamaz. ışık hızına çıkmanın tek yolu sıfır kütle ile belirsizlik yaratmaktır.

alternatif yol:

Bir taneciğin enerjisi (Einstein formülü):

Bir fotonun enerjisi (Planck formülü):

Foton da bir tanecik olduğu için:

O halde; Fotonun momentumu:

Burada;[3]

: Planck sabiti=, J·s biriminde,

: taneciğin dalga boyu, metre birimindedir.

Not

Bu sayfadaki bütün formüllerde:

Ayrıca bakınız

Fotonik

Kaynakça

  1. ^ Ayar ve Higgs bozonları için resmi parçacık tablosu 28 Aralık 2016 tarihinde Wayback Machine sitesinde arşivlendi. Erişim 24 Ekim 2006
  2. ^ "Fotonlar Kütlesizse, Kütleçekiminden Neden ve Nasıl Etkileniyorlar?". Evrim Ağacı. 14 Ağustos 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Ağustos 2022. 
  3. ^ İngilizce Vikipedi'deki Planck constant sayfasının 26 Ocak 2012 tarihindeki sürümü

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

Planck sabiti (h), bir fizik sabitidir ve kuantum mekaniğindeki aksiyonum kuantumu için kullanılır. Değeri h= 6.62607015×10−34 J⋅s' dir. Planck sabiti daha önceleri bir Fotonun enerjisi (E) ile elektromanyetik dalgasının frekansı (ν) arasında bir orantı idi. Enerji ile frekans arasındaki bu ilişki Planck ilişkisi veya Planck formülü olarak adlandırılır:

Kuantum ışınlama, maddenin kendisinin bir başka hali olan enerjiye dönüştürülerek uzay-zamanda hareket ettirilmesidir.

Madde dalgaları veya de Broglie dalgaları, maddenin dalga-parçacık ikiliğini yansıtan kavramdır. Kuram 1924'te, Louis de Broglie tarafından doktora tezinde önerilmiştir. De Broglie denklemleri dalga boyunun parçacığın momentumuyla ters orantılı olduğunu gösterir ve ayrıca de Broglie dalga boyu diye isimlendirilir. Ayrıca madde dalgalarının tekrarsıklığı, de Broglie tarafından türetildiği gibi, parçacığın toplam enerjisi E'ye – kinetik enerjisinin ve potansiyel enerjisinin toplamı – doğru orantılıdır.

Elektronvolt (eV) değeri yaklaşık 1.6 x 10−19 J olan enerjiye verilen addır. Tanım olarak bir elektronun, boşlukta, bir voltluk elektrostatik potansiyel farkı katederek kazandığı kinetik enerji miktarıdır. Diğer bir deyişle, 1 volt çarpı elektronun yüküne eşittir. 1 volt temel yük ile çarpıldığında buna eşit olmaktadır.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

<span class="mw-page-title-main">Louis de Broglie</span> Fransız fizikçi (1892-1987)

Louis-Victor Pierre Raymond de Broglie, Nobel Ödülü sahibi Fransız fizikçi. De Broglie ayrıca Académie des sciences'ın daimi sekreteriydi.

Rydberg sabiti, Rydberg formülündeki sabittir ve uyarılmış hidrojen atomunun yaydığı elektromanyetik ışınımın dalgaboyunun hesaplanmasında kullanılır. Bu sabit adını İsveçli fizikçi Johannes Rydberg'ten (1854-1919) almıştır. Sabitin sayısal değeri fizikte kullanılan diğer sabitlerden türetilmiştir.

<span class="mw-page-title-main">Radyasyon</span> Uzayda hareket eden dalgalar veya parçacıklar

Radyasyon veya ışınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yaymasına" veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamına" da radyasyon denir. Bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla veya oldukça az ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar. Çevresine bu şekilde ışın saçarak parçalanan maddelere radyoaktif madde denir.

<span class="mw-page-title-main">Compton saçılması</span>

Compton olayı, yüksek enerjili X ışınlarının fotonu ile karbon atomunun serbest elektronunun çarpıştırılması sonucu elektronun ve fotonun şekildeki gibi saçılması olayıdır.

Planck formülü, kuantum fiziğinde frekansı bilinen bir taneciğin enerjisinin hesaplanabildiğini gösteren formüldür. Max Planck tarafından 1900 yılında keşfedilmiştir. Planck formülü, ilk olarak bir fotonun enerjisi (E) ile ona eşlik eden elektromanyetik dalganın frekansı (ν) arasındaki bağıntı olarak tarif edilmiştir.

Fizikte Planck kütlesi (mP), Planck birimleri olarak bilinen doğal birimler sisteminde kütle birimidir.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Kuantum mekaniği madde ve atomların ve atom içindeki parçacıklar ölçeğinde enerji ile etkileşimlerinin davranışını açıklayan bilimsel ilkeler organıdır: Bu makaleye teknik olmayan konuların tanıtımında ulaşabilirsiniz.

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

Isıl ışınım maddedeki yüklü parçacıkların ısıl hareketiyle meydana gelmiş elektromanyetik ışınımdır. Isısı mutlak sıfırdan büyük olan her madde ısıl ışınım yayar. Isısı mutlak sıfırdan büyük olan maddelerde atomlar arası çarpışmalar, atomların ya da moleküllerin kinetik enerjisinde değişime neden olur.

Elektromanyetik kütle başlangıçta, elektromanyetik alanın ya da öz-enerjinin ne kadar olduğunu gösteren, yüklü parçacıkların kütlesine katkıda bulunan, bir klasik mekanik kavramıydı. İlk defa 1881 yılında J.J. Thomson tarafından elde edildi ve bir süreliğine tek başına eylemsizlik kütlesinin dinamik açıklaması olarak da kabul edildi. Bugün, kütle, momentum, hız ve tüm enerji çeşitlerinin ilişkileri, elektromanyetik enerji de dahil, Albert Einstein'ın özel görelilik ve kütle-enerji eşdeğerliği bazında incelenmektedir. Temel parçacıkların kütle nedeni olarak, göreceli Standart Model çerçevesinde Higgs mekanizması halen kullanılmaktadır. Ayrıca, yüklü parçacıkların elektromanyetik kütle ve iç enerjileri ile ilgili problemler hala araştırılmaktadır.

<span class="mw-page-title-main">Planck yasası</span> belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eden terim

Planck yasası belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eder. Yasa 1900 yılında Max Planck bu ismi önerdikten sonra isimlendirilmiştir. Planck yasası modern fiziğin ve kuantum teorisinin öncül bir sonucudur.

<span class="mw-page-title-main">Durgun kütle</span>

Değişmez kütle, durgun kütle, gerçek kütle, tam kütle ya da sınır sistemleri durumunda basitce kütle, bir objenin veya Lorentz dönüşümlerine göre tüm referans çerçevelerinde aynı olan objelerin sisteminin toplam enerji ve momentum karakteridir. Eğer momentum çerçevesinin bir merkezi sistemde oluşuyorsa, sistemin değişmez kütlesi toplam enerjinin ışık hızının karesine bölümüyle bulunur. Diğer referans çerçevelerinde, sistemin enerjisi artar yalnız sistemin momentumu bundan çıkarılmıştır, yani değişmez kütle aynı kalır.