İçeriğe atla

Fonksiyonun limiti

x
10,841471...
0,10,998334...
0,010,999983...

Her ne kadar (sin x)/x fonksiyonu sıfırda tanımlı olmazsa bile, x, sıfıra çok çok yakın olduğunda, (sin x)/x, 1'e yaklaşır. Diğer taraftan x sıfıra yaklaşırken (sin x)/x fonksiyonunun limiti 1'e eşittir.

Matematikte bir fonksiyonun limiti, kalkülüs ve analizde kullanılan bir temel kavramdır ve belirli bir girişe yaklaşan bir fonksiyonun davranışı ile ilgilidir.

Formal tanımı ilk olarak 19. yüzyıl başlarında ortaya çıktı ve şöyledir: Bir f fonksiyonunun her x girişi için bir f(x) çıkış olur. Bu fonksiyon p girişinde bir L limiti vardır ve şöyle ifade edilir: x, p ye çok çok yaklaştıkça, f(x) fonksiyonu da L ye çok çok yaklaşır.

Tanımlar

Yukarıdaki eşitliğin anlamı: "x, p ye yaklaşırken, ƒ(x) fonksiyonunun limiti L dir" denir.

Reel doğrudaki fonksiyonlar

f : RR reel doğruda tanımlı ve p,L R ise, "x, p ye yaklaşırken f fonksiyonunun limiti, Ldir" denir ve şöyle sembolize edilir:

Eğer aşağıdaki özellik sağlanırsa:

  • Her ε > 0 reel sayısı için bir δ > 0 reel sayısı vardır. Tüm x için, 0 < | x − p | < δ oluyorsa | f(x) − L | < ε olur.

p, f fonksiyonunun tanım kümesinde olsa bile limitin değeri, f(p) değerine bağlı değildir.

Tek taraflı limitler

x → x0+ ≠ x → x0 olduğundan dolayı x → x0 limit yoktur.

Alternatif olarak x, p ye üstten (sağdan) veya alttan (soldan) yaklaşabilir. Bu durumda limitler sırasıyla şöyle yazılır:

ve

Eğer her iki durumda da limitler L ye eşit ise, "f(x) in p noktasındaki limitleri L ye eşittir" denir. Benzer şekilde eğerher iki noktadaki limitte L ye eşit değilse, "limit yoktur" denir.

Formal tanımı şu şekildedir: x, p ye üstten yaklaşırken, f(x) in limiti L dir. Her ε > 0 için δ > 0 olur. 0 < x − p < δ olursa |f(x) − L| < ε olur. Benzer şekilde x, p ye alttan yaklaşırken, f(x) in limiti L dir. Her ε > 0 için, δ > 0 olur. 0 < p − x < δ olursa |f(x) − L| < ε olur.

Limitsiz fonksiyona örnek

Limitsiz fonksiyon

fonksiyonu noktasında limiti yoktur. Bu yüzden fonksiyon süreksizdir.

Metrik uzayındaki fonksiyonlar

M ve N, sırasıyla A ve B metrik uzaylarının alt kümeleri olsun ve f : MN, M ile N arasında tanımlansın, xM için p, M nin bir limit noktasıdır ve LN olur. "x, p ye yaklaşırken f nin limiti L dir" denir. ve şöyle yazılır:

Eğer aşağıdaki özellik sağlanırsa:

  • Her ε > 0 için, bir δ > 0 vardır. 0 < dA(xp) < δ oluyorsa, dB(f(x), L) < ε olur.

Topolojik uzaydaki fonksiyonlar

Y Hausdorff uzayı ve X topolojik uzay olsun. p, Ω ⊆ X de bir limit noktası ve LY olsun. f : Ω → Y fonksiyonu için "x, p ye yaklaşırken f nin limiti L dir" denir. (örn, xp için, f(x)L) ve şöyle yazılır:

Eğer aşağıdaki özellik sağlanırsa:

  • Her L nin açık V komşusu için, p nin açık U komşusu vardır. f(U ∩ Ω − {p}) ⊆ V.

Özellikler

Eğer bir f fonksiyonu reel değerli ise, f nin p noktasında ancak ve ancak hem sağ limit hem de sol limit varsa ve L ye eşit ise, f nin p noktasındaki limiti L dir. f fonksiyonu, p noktasında sürekli ise ancak ve ancak x, p ye yaklaşırken f(x)in limiti vardır ve f(p) ye eşittir. Eğer f : MN, M ve N metrik uzaylarında bir fonksiyon ise, M deki her dizi için f dönüşümlerine eşdeğerdir.

Eğer f reel değerli (veya karmaşık değerli) bir fonksiyon ise, limiti temel aritmetik işlemlerine göre alınır. Bu limit alma işlemi cebirsel limit teoremi olarak adlandırılır.

Yukarıdaki her bir eşitlikte sağdaki limit yoksa veya son eşitlikte, hem pay hem de paydanın limitler sıfırsa, soldaki limite yine de belirsiz form denir. Bu belirsizlik f ve g fonksiyonlarının durumuna bağlıdır. Bu kurallar tek taraflı limitlerde de geçerlidir. p = ±∞ ve sonsuz limitler için, aşağıdaki kurallar geçerlidir.

  • q + ∞ = ∞ for q ≠ −∞
  • q × ∞ = ∞ if q > 0
  • q × ∞ = −∞ if q < 0
  • q / ∞ = 0 if q ≠ ± ∞

q / 0 durumu için genel kural olmadığına dikkat edin. Örneğin, 0/0, 0×∞, ∞−∞ ve ∞/∞ belirsiz formları bu kurallarda da geçerlidir.

Özel tanımlı fonksiyonların limiti

Matematikte limitin farklı durumlarda kullanımı vardır.Bu kullanımlar Özel Tanımlı Fonksiyonların Limiti olarak tanımlanır.

Bu özel tanımlı fonksiyonlar;

  1. Parçalı Fonksiyonların Limiti
  2. Trigonometrik Fonksiyonların Limiti
  3. Mutlak Değer Fonksiyonların Limiti

Bu fonksiyonların çözümü kendi içlerinde özel yöntemler barındırır.

Parçalı Fonksiyonların Limiti

Tanım kümesinin aralıklarında farklı birer kuralla tanımlanan fonksiyonlara Parçalı Fonksiyonlar denir.Bu fonksiyonların limiti şöyle hesaplanır;

durumunda,

=

oluyorsa,

Trigonometrik Fonksiyonların Limiti

1.sinx ve cosx in limiti

Bir dik üçgende, bir dar açının karşısındaki kenar uzunluğunun hipotenüsün uzunluğuna oranına, o açının sinüsü denir.

Sinüs fonksiyonu, bütün gerçek sayıları [-1,1] aralığına götürür."sin" ile ifade edilir.

Bir dik üçgende, bir dar açının yanındaki kenar uzunluğunun hipotenüsün uzunluğuna oranına, o açının kosinüsü denir.

Kosinüs fonksiyonu, bütün gerçek sayıları [-1,1] aralığına götürür."cos" ile ifade edilir.

2. tanx in limiti

Bir dik üçgende, bir dar açının karşısındaki dik kenar uzunluğunun yanındaki dik kenarın uzunluğuna oranına, o açının tanjantı denir.

Tanjant fonksiyonu, her k tam sayısı için  π/2 + kπ sayıları dışındaki bütün gerçek sayıları bütün gerçek sayılara götürür."tan" ile ifade edilir.

tanx fonksiyonu, t bir tam sayı olmak üzere;

koşuluna uyan bütün x gerçek sayıları için tanımlı olduğu için,

3. cotx in limiti

Bir dik üçgende, bir dar açının yanındaki dik kenar uzunluğunun karşısındaki dik kenarın uzunluğuna oranına, o açının kotanjantı denir.

Kotanjant fonksiyonu, her k tam sayısı için kπ sayıları dışındaki bütün gerçek sayıları, bütün gerçek sayılara götürür."cot" ile ifade edilir.

cotx fonksiyonu, t bir tam sayı olmak üzere, x≠tπ koşuluna uyan bütün x sayıları için tanımlı olduğu için,

(a≠t.π ve t ∈ ℤ)

olur.

t ∈ ℤ olmak üzere, a=t.π için,

yoktur.

Mutlak Değer Fonksiyonların Limiti

ƒ fonksiyonu A'dan B'ye gerçek sayılarda tanımlı bir fonksiyon olsun. |ƒ| fonksiyonuna ƒ fonksiyonunun mutlak değer fonksiyonu denir.

Mutlak değerin tanımına göre ƒ(x) in negatif olmadığı yerde |ƒ(x)| in grafiği ƒ(x) in grafiği ile aynıdır. ƒ(x) in negatif olduğu yerde |ƒ(x)| in grafiği ƒ(x) in grafiğinin x eksenine göre simetriğidir.

ƒ fonksiyonu gerçek sayılarda tanımlı bir fonksiyon,

olmak üzere,

mutlak değerin içini 0 yapan değer kritik noktadır. Yani ƒ(a)=0 kritik noktada limit sorulursa ƒ(x) fonksiyonunun sağdan ve soldan limitlerine bakılır.

Kritik nokta dışında limit sorulursa,

=

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Riemann toplamı</span>

Matematikte, Riemann toplamı genellikle fonksiyon eğrisinin altında kalan bölgenin yaklaşık alanıdır. Bu toplama, Alman matematikçi Bernhard Riemann'ın soyadı verilmiştir.

<span class="mw-page-title-main">İntegral</span> fonksiyon eğrisinin altında kalan alan

İntegral veya tümlev, toplama işleminin sürekli bir aralıkta alınan hâlidir. Türev ile birlikte kalkülüsün temelini oluşturan iki işlemden birisidir. Kalkülüsün temel teoremi sayesinde aynı zamanda türevin ters işlemidir.

<span class="mw-page-title-main">Limit</span> Sayıların ucu

Limit kelimesi Latince Limes ya da Limites 'den gelmekte olup sınır, uç nokta anlamındadır. Öklid ve Arşimet tarafından eğrisel kenarlara sahip şekillerle ilgili olan teoremlerde kullanılmıştır. Limit kavramı, çok önceleri kullanılmasına rağmen sonra unutulmuş ve daha sonra Newton ile Leibniz'in eserlerinde görülmüştür. Mesela, diferansiyel hesapta bir eğri sonsuz küçük uzunlukta sonsuz kenara sahip bir çokgen olarak kabul edilir. Limit kavramından ortaya çıkan diferansiyel hesap, pek çok fizik probleminin kolayca ele alınmasını sağlar.

<span class="mw-page-title-main">Dirac delta fonksiyonu</span>

Adını Paul Dirac' tan alan Dirac delta fonksiyonu tek boyutta

<span class="mw-page-title-main">Kalkülüs</span>

Başlangıçta sonsuz küçük hesap veya "sonsuz küçüklerin hesabı" olarak adlandırılan kalkülüs, geometrinin şekillerle çalışması ve cebirin aritmetik işlemlerin genellemelerinin incelenmesi gibi, kalkülüs sürekli değişimin matematiksel çalışmasıdır.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

Matematikte sonuşmaz veya asimptot, belirli bir A eğrisine istenildiği kadar yaklaşabilen ikinci bir B eğrisine verilen addır. Bir başka deyişle, A üzerinde ilerledikçe, A ve B arasındaki mesafe azalır ve sıfıra yaklaşır. Asimptot kelimesi, Yunanca "beraber düşmek" anlamındaki simpiptein fiilinin olumsuz halinden türemiştir.

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Matematikte verilmiş bir P noktasındaki ve V vektörü boyuncaki çok değişkenli bir fonksiyonun yönlü türevi sezgisel olarak fonksiyonun P noktasında, V vektörü boyuncaki anlık değişim oranını temsil eder. Bu yüzden, kısmi türev fikrinin genelleştirmesidir çünkü kısmi türevler alınırken yön her zaman koordinat eksenlerine paralel olarak alınmaktadır.

<span class="mw-page-title-main">Eğim</span>

Matematikte bir doğrunun eğimi ya da gradyanı o doğrunun dikliğini, eğimliliğini belirtir. Daha büyük eğim, daha dik bir doğru demektir.

Kuantum mekaniği ve Kuantum alan kuramı içinde yayıcı belirli bir zamanda bir yerden başka bir yere seyahat etmek ya da belirli bir enerji ve momentum ile seyahat için bir parçacığın olasılık genliği verir. Yayıcılar Feynman diyagramları iç hatları üzerinde sanal parçacık'ların katkısını temsil etmek üzere kullanılmaktadır. Ayrıca partikül uygun dalga operatörünün tersi olarak görülebilir ve bu nedenle sıklıkla Green fonksiyonları olarak adlandırılır.

Kalkülüste tek taraflı limit, x reel değişkenli bir f(x) fonksiyonun her iki limitidir. Burada x, ya üstten ya da alttan belirli bir noktaya yaklaşır. Bu limit şöyle sembolize edilebilir:

veya veya ya da

Kalkülüs ve matematiksel analizin diğer dallarında cebirsel işlemlerle ilgili olan limitler, daha çok alt ifadelerin yer değiştirmesi ile gerçekleştirilir. Bu değişimden sonra elde edilen ifade eğer, asıl limit ile ilgili yeteri kadar bilgi içermiyorsa, buna 'belirsiz form denir.

<span class="mw-page-title-main">Dizinin limiti</span>

Matematikte, bir dizinin limiti, dizinin terimlerinin yaklaştığı değerdir. Eğer böyle bir limit varsa diziye yakınsak denir. Yakınsamayan diziye ıraksak denir. Bir dizinin limiti, analizin nihai olarak dayandığı temel kavram olarak görülür.

Pro sonlu gruplar, Matematikte ilk olarak sayılar kuramında görülmüştür. 19. yüzyılın sonlarına doğru kongurans sistemlerini çalışmak için Alman matematikçi Hensel tarafından bulunan p-sel tamsayılar halkası Zp, pro-sonlu grupların en temel örneklerinden birisidir. Alman matematikçi Krull herhangi bir sonsuz Galois genişlemesinin Galois grubunun aslında doğal bir şekilde pro-sonlu grup yapısına sahip olduğunu gördü. Bu yapının sonlu Galois genişlemelerinin Galois gruplarıyla belirlendiğini gösterdi. Daha sonra, cebirsel geometri alanında Grothendieck, şemaların temel gruplarını birer pro-sonlu grup olarak tanıttı.

<span class="mw-page-title-main">Sıkıştırma teoremi</span>

Kalkülüste, sandviç teoremi, sandviç kuralı, polis teoremi olarak da bilinen sıkıştırma teoremi bir fonksiyonun limitiyle ilgili bir teoremdir. İtalya'da teorem, jandarma teoremi olarak da bilinir.

Matematiğin bir alt dalı olan fonksiyonel analizde, tam normlu vektör uzayılarına Banach uzayı denir. Tanımı gereği, Banach uzayı, vektör uzunluğunun ve vektörler arasındaki mesafenin hesaplanmasına vesile olan bir metriğe sahip bir vektör uzayıdır ve bu metrik uzayda herhangi bir Cauchy vektör dizisinin her zaman uzayın içinde kalan ve iyi tanımlanmış bir limiti olması anlamında tamdır.

Matematikte, bir càdlàg fonksiyon, gerçek sayıların bir altkümesi üzerinde tanımlı ve bu tanım kümesinin her noktasında sağdan sürekli, soldan limitli olan bir fonksiyondur. Cadlàg fonksiyonlar, özellikle sıçramaları olan stokastik süreçlerin incelenmesinde önemlidir. Bir tanım kümesi üzerindeki càdlàg fonksiyonların kümesine Skorokhod uzayı denir.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.