İçeriğe atla

Florokarbon

Beaker with two layers of liquid, goldfish and crab in top, coin sunk in the bottom
Bir beher içerisinde renkli su (üstte) ve çok daha yoğun perfloroheptan (altta) karışmaz tabakalar; bir akvaryum balığı ve yengeç sınırdan geçemez

Florokarbonlar, bazen perflorokarbon veya PFC olarak da anılır, CxFy formülüne sahip organoflor bileşikleridir. Sadece karbon ve flor içerirler [1] fakat terminoloji her zaman çok sıkı takip edilmemektedir.[2] Perfloro- ön ekine sahip bileşikler, heteroatomlu olanlar da dâhil olmak üzere hidrokarbonlardır, burada tüm C-H bağları C-F bağlarıyla değiştirilmiştir.[3] Florokarbonlar perfloroalkanlar, floroalkenler ve floroalkinler ve perfloroaromatik bileşikler olabilir. Florokarbonlar ve bunların türevleri floropolimerler, soğutucular, çözücüler ve anestezikler olarak kullanılır.

Perfloroalkanlar

Kimyasal özellikler

Perfloroalkanlar, organik kimyadaki en güçlü bağlardan biri olan karbon-flor bağının gücü nedeniyle çok kararlıdır.[4] Gücü, florun elverişli kovalent etkileşimler yoluyla bağı kısaltan ve güçlendiren karbon ve flor atomları üzerindeki kısmi yüklerle kısmi iyonik karakter kazandıran elektronegatifliğinin bir sonucudur. Ek olarak, çoklu karbon-flor bağları, karbonun daha yüksek bir pozitif kısmi yüke sahip olması nedeniyle, aynı ikiz karbon üzerindeki yakındaki diğer karbon-flor bağlarının gücünü ve dengesini arttırır.[2] Ayrıca, çoklu karbon-flor bağları aynı zamanda "iskelet" karbon-karbon bağlarını indükleyici etkiden güçlendirir.[2] Bu nedenle, doymuş florokarbonlar, karşılık gelen hidrokarbon emsallerinden ve hatta başka herhangi bir organik bileşikten kimyasal ve termal olarak daha kararlıdır. Çok güçlü indirgeyiciler tarafından saldırıya açıktırlar; örneğin Birch indirgemesi ve çok özel organometalik kompleksler.[5]

Florokarbonlar renksizdir ve suyun iki katından fazlasına kadar yüksek yoğunlukludur. Çoğu organik çözücü ile karışmaz (örneğin, etanol, aseton, etil asetat ve kloroform), ancak bazı hidrokarbonlarla (örneğin bazı durumlarda heksan) karışabilir. Suda çok düşük çözünürlüğe sahiptirler ve su da florokarbonlar içinde çok düşük bir çözünürlüğe sahiptir (10 ppm). Kırılma indisleri düşüktür.

Kutuplaşmış C-F

bağında kısmi yükler

Florun yüksek elektronegatifliği, atomun polarize edilebilirliğini azalttığı için,[2] florokarbonlar, polar moleküller arası etkileşim temelini oluşturan uçucu dipollere zayıf şekilde duyarlıdır. Sonuç olarak, florokarbonlar düşük moleküller arası çekici kuvvetlere sahiptir ve hidrofobik ve apolar olmalarına ek olarak lipofobiktirler. Zayıf moleküller arası kuvvetlere sahip bu bileşikler, benzer kaynama noktalarına sahip, düşük yüzey gerilimi ve düşük buharlaşma sıcaklıklarına sahip sıvılarla karşılaştırıldığında düşük akmazlık (viskozite) sergiler. Florokarbon sıvılardaki düşük çekici kuvvetler onları sıkıştırılabilir (düşük kütle modülü) ve gazı nispeten iyi bir şekilde çözebilir hale getirir. Küçük florokarbonlar son derece uçucudur .[2] Beş perfloroalkan gazı vardır: tetraflorometan (kn −128   °C), hegzafloroetan (kn −78.2   °C), oktafloropropan (kn −36.5 °C), perfloro-n-bütan (kn 2.2 °C) ve perfloro-izo-bütan (kn −1 °C). Neredeyse tüm diğer floroalkanlar sıvıdır; En dikkat çeken istisna, 51 °C'de süblime olan perflorosikloheksandır.[6] Florokarbonlar ayrıca düşük yüzey enerjilerine ve yüksek dielektrik dayanıma sahiptir.[2]

Yanıcılık

1960'larda anestetik olarak florokarbonlara büyük ilgi vardı. Araştırma hiçbir sonuca varmadı, ancak yanıcılığın hayatiliği konusunda oldukça çaba harcandı ve test edilen florokarbonların, çoğu temiz oksijen ve temiz azot oksit (anesteziyolojideki önemli gazlar) gazları olmasına rağmen herhangi bir oranda yanıcı olmadığını gösterdi.[7][8]

Bileşik Test koşulları Sonuç
Heksafloroetan Oksijende düşük yanma sınırı Yok
Perfloropentan Havadaki parlama noktası Yok
Oksijendeki parlama noktası -6   °C
Azot oksitteki parlama noktası -32   °C
Perflorometilsikloheksan Havada alt alevlenme sınırı Yok
Oksijende alt yanma sınırı % 8.3
Oksijende alt alevlenme sınırı (50 °C) % 7.4
Azot oksitte alt yanma sınırı % 7.7
Perfloro-1,3-dimetilsikloheksan Oksijende alt alevlenme sınırı (50 °C) % 5.2
Perflorometildekalin Kendiliğinden ateşleme testi 127 barda oksijen ile 500'de ateşleme yok   °C
Oksijende adyabatik şok dalgasında kendiliğinden tutuşma, 0,98 - 186 bar Ateşleme yok
Oksijende adyabatik şok dalgasında kendiliğinden tutuşma, 0,98 - 196 bar Ateşleme

1993'te 3M, florokarbonları CFC'lerin yerine yangın söndürücü olarak düşündü.[9] Yangından ısı alan, yüksek ısı kapasiteleri sebebiyle bu yangın söndürme etkisi düşünülmüştür. Bir uzay istasyonunda veya benzerinde kayda değer miktarda perflorokarbon içeren bir atmosferin yangınları tamamen önleyeceği önerilmiştir.[10][11] Yanma meydana geldiğinde, karbonil florür, karbon monoksit ve hidrojen florür dahil toksik dumanlar çıkar.

Gaz çözme özellikleri

Perflorokarbonlar göreceli olarak yüksek hacimli gazları çözer. Gazların yüksek çözünürlüğü, bu florokarbon akışkanlardaki zayıf moleküller arası etkileşimlere bağlanır.[12]

Tablo mol fraksiyon değerlerini gösterir, x1, 298.15 °K (25 °C), 0.101325 M Pa'da çözünmüş azot miktarını Ostwald katsayısından hesaplamaktadır.[13]

Sıvı 10 4 x 1Konsantrasyon, mM
Su0,118 0.65
Etanol3.57 6.12
aseton5.42 7.32
Tetrahidrofuran 5.21 6,42
Sikloheksan 7.73 7.16
Perflorometilsikloheksan 33.1 16.9
Perfloro-1,3-dimetilsikloheksan 31.9 14.6

Üretim

Florokarbon endüstrisinin gelişimi, II. Dünya Savaşı ile aynı zamana denk geldi.[14] Bundan önce, florokarbonlar, florun hidrokarbonla, yani doğrudan florizasyonla reaksiyonuyla hazırlandı. CC bağları flor ile kolayca parçalandığından, doğrudan florlama çoğunlukla tetraflorometan, heksafloroetan ve oktafloropropan gibi daha küçük perflorokarbonlar verir.[15]

Fowler süreci

Büyük ölçekli florokarbon üretimine izin veren önemli bir buluş, Fowler süreci idi. Bu işlemde, kobalt triflorür florin kaynağı olarak kullanılır. Örnek, perfloroheksanın sentezidir:

C6H14 + 28 CoF3 → C6F14 + 14 HF + 28 CoF2

Elde edilen kobalt diflorür daha sonra bazen ayrı bir reaktörde yeniden üretilir:

2 CoF2 + F2 → 2 CoF3

Endüstriyel olarak, her iki adım, örneğin F2 kimyasalları Ltd tarafından üretilen Flutec yelpazesindeki flüorokarbonların imalatında, dikey karıştırılmış yataklı bir reaktör kullanılarak, altta hidrokarbon sokulmuş ve flüor reaktörün yarısına kadar sokulmuş olarak birleştirilmiştir. Florokarbon buharı üstten geri kazanılır.

Elektrokimyasal florlama

Elektrokimyasal florlama (ECF) (ayrıca Simons işlemi olarak da bilinir), hidrojen florür içinde çözünmüş bir substratın elektrolizini içerir. Florun kendisi, hidrojen florürün elektroliziyle üretildiği için ECF, florokarbonlara daha doğrudan bir yoldur. İşlem düşük voltajda (5 - 6 V) ilerler, böylece serbest flor serbest kalır. Substrat seçimi ideal olarak, hidrojen florür içerisinde çözünmesi gerektiği için sınırlandırılır. Eterler ve üçüncül aminler tipik olarak kullanılır. Perfloroheksan yapmak için, triheksilamin kullanılır, örneğin:

N(C6H13)3 + 45 HF → 3 C6F14 + NF3 + 42 H2

Perflorlanmış amin ayrıca üretilecektir:

N (C6H13)3 + 39 HF → N(C6F13)3 + 39 H2

Çevresel ve sağlık sorunları

Floroalkanlar genellikle atıl ve toksik değildir.[16][17][18]

Floroalkanlar, klor veya brom atomları içermediklerinden ozon tabakasına zarar vermezler ve bazen ozon tabakasına zarar veren kimyasal maddelerin yerine kullanılırlar.[19] Florokarbon terimi, ozon tabakasına zarar veren kloroflorokarbonlar dahil olmak üzere flor ve karbon içeren herhangi bir kimyasal maddeyi içermek için oldukça gevşek kullanılır. Floroalkanlann bazen önemli derecede biyoakümüle olan florosürfaktanlar ile karıştırılmamalıdır. Perfloroalkanlar biyolojik olarak birikmez; [] tıbbi prosedürlerde kullanılanlar, esasen buhar basıncının bir fonksiyonu olarak atılma oranıyla sona erme yoluyla vücuttan atılır; oktafloropropan için yarı ömür 2 dakikadan azdır, perflorodekalin için bu yaklaşık bir haftadır.[20][21]

Düşük kaynama noktalı perfloroalkanlar, kısmen çok uzun atmosferik ömürleri nedeniyle, güçlü sera gazlarıdır ve kullanımları Kyoto Protokolü tarafından kapsanmaktadır.[22]

Alüminyum eritme endüstrisi, elektroliz işleminin yan ürünü olarak üretilen atmosferik perflorokarbonların (özellikle tetraflorometan ve heksafloroetan) temel bir kaynağı olmuştur.[23] Bununla birlikte, sanayi son yıllarda emisyonların azaltılmasında aktif olarak yer almaktadır.[24]

Uygulamalar

Tepkisiz (inert) oldukları için, perfloroalkanların esasen kimyasal kullanımı yoktur, ancak fiziksel özellikleri birçok farklı uygulamada kullanılmasına neden olmuştur. Bunlar şunları içerir:

Birkaç tıbbi kullanımı:

  • Sıvı nefes
  • Kan yerine
  • Kontrastlı ultrason
  • Göz ameliyatı [27]
  • Dövme silme [28]

Floroalkenler ve floroalkinler

Doymamış flüorokarbonlar, flüoroalkanlardan çok daha reaktifdir. Difloroasetilen kararsız olmasına rağmen (ilgili alkinler için tipik olduğu gibi, dikloroasetilene bakınız),[2] heksafloro-2-butin ve ilgili florin alkinler iyi bilinmektedir.

Polimerizasyon

Floroalkenler, normal alkenlerden daha ekzotermik olarak polimerize olur.[2] Doymamış florokarbonların, elektronegatif flor atomlarının düşük s karakterli orbitallerinin daha fazla bağ elektronu paylaşma arayışı sebebiyle, sp3 hibridizasyonuna yönelik bir tahrik kuvveti vardır.[2] Bu sınıfın en ünlü üyesi,Teflon ismi altında daha iyi bilinen politetrafloroetilen (PTFE) üretiminde kullanılan tetrafloroetilendir .

Çevresel ve sağlık sorunları

Floroalkenler ve florlu alkinler reaktifdir ve çoğu, perfloroizobüten gibi toksiktir. [] Floroalkenler, klor veya brom atomları içermediklerinden ozon tabakasına zarar vermezler. Sera gazları olamayacak kadar reaktifler. [] Politetrafloroetilen üretmek için biyoakümülasyon yapan çeşitli florlu yüzey aktif cisimleri kullanılır. []

Perfloroaromatik bileşikler

Perfloroaromatik bileşikler, diğer florokarbonlar gibi sadece karbon ve flor içerir, fakat aynı zamanda bir aromatik halka içerir. En önemli üç örnek, hekzaflorobenzen, oktaflorotolüen ve oktafloronaftalendir.

Perfloroaromatik bileşikler, floroalkanlar gibi Fowler işlemi yoluyla üretilebilir, ancak tam florlanmayı önlemek için koşullar ayarlanmalıdır. Ayrıca karşılık gelen perkloroaromatik bileşiğin potasyum florür ile yüksek sıcaklıkta ısıtılmasıyla da yapılabilir (tipik olarak 500 °C) klor atomlarının yerini flor atomları alır. Üçüncü bir yol, floroalkanın deflorizasyonudur; örneğin, oktaflorotoluen, perflorometilsikloheksandan Nikel veya demir katalizör ile 500 °C'ye ısıtılarak yapılabilir.[29]

Perfloroaromatik bileşikler aşağıdaki tabloda gösterildiği gibi, karşılık gelen aromatik bileşiğe benzer erime ve kaynama noktalarına sahip moleküler ağırlıkları için nispeten uçucudur. Yoğunluğu yüksektir ve yanıcı değildir. Çoğunlukla berrak, renksiz sıvılardır (sarı bir katı olan oktafloronaftalen bir istisnadır). Perfloralkanların aksine, genel çözücüler ile karışabilir olma eğilimindedirler. []

Bileşik Erime noktası, °C Kaynama noktası, °C
Hekzaflorobenzen 5.3 80.5
Benzen5.5 80.1
Oktaflorotoluen <-70 102-103
Toluen-95 110.6
Perfloro (etilbenzen) - 114-115
Etilbenzen -93,9 136.2
Oktafloronafthalin 86-87 209 [30]
Naftalin80.2 217.9

Ayrıca bakınız

  • Kategori: Florokarbonlar
  • Florokimya endüstrisi
  • Fluorografen
  • Perflorosikloalken (PFCA)

Kaynakça

  1. ^ IUPAC, Compendium of Chemical Terminology, 2. basım (the "Gold Book") (1997). Düzeltilmiş çevrimiçi sürümü:  (2006-) "fluorocarbons".
  2. ^ a b c d e f g h i Lemal DM (January 2004). "Perspective on fluorocarbon chemistry". J. Org. Chem. 69 (1): 1–11. doi:10.1021/jo0302556. PMID 14703372. Kaynak hatası: Geçersiz <ref> etiketi: "Lemal" adı farklı içerikte birden fazla tanımlanmış (Bkz: )
  3. ^ Murphy WJ (March 1947). "Fluorine Nomenclature... A statement by the Editors". Ind. Eng. Chem. 39 (3): 241–242. doi:10.1021/ie50447a004.
  4. ^ O'Hagan D (February 2008). "Understanding organofluorichemistry. An introduction to the C–F bond". Chem. Soc. Rev. 37 (2): 308–19. doi:10.1039/b711844a. PMID 18197347.
  5. ^ Kiplinger JL, Richmond TG, Osterberg CE (1994). "Activation of Carbon-Fluorine Bonds by Metal Complexes". Chem. Rev. 94 (2): 373–431. doi:10.1021/cr00026a005.
  6. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2008-12-05. Retrieved 2008-11-29.
  7. ^ Larsen ER (1969). "Fluorine Compounds in Anesthesiology: VI Flammability". Fluorine Chem. Rev. 3: 22–27.
  8. ^ Flutec (Technical report). ISC Chemicals Limited. 1982.
  9. ^ John A. Pignato, Jr.; Paul E. Rivers; Myron T. Pike. "Development of Perfluorocarbons As Clean Extinguishing Agents" (PDF). National Institute of Standards and Technology. Archived from the original (PDF) on 2014-05-21. Retrieved 2019-01-03.
  10. ^ McHale ET (1974). "Life Support Without Combustion Hazards". Fire Technology. 10 (1): 15–24. doi:10.1007/bf02590509.
  11. ^ Huggett C (1973). "Habitable Atmospheres Which Do Not Support Combustion". Combustion and Flame. 20: 140–142. doi:10.1016/s0010-2180(73)81268-4.
  12. ^ "Dissolving gases in FLUTEC™ liquids" (PDF). F2 Chemicals Ltd. 10 May 2005.
  13. ^ Battino R, Rettich TR, Tominaga T (1984). "The solubility of nitrogen and air in liquids". J. Phys. Chem. Ref. Data. 13 (2): 308–19.
  14. ^ McBee ET (March 1947). "Fluorine Chemistry". Ind. Eng. Chem. 39 (3): 236–237. doi:10.1021/ie50447a002.
  15. ^ Siegemund G, Schwertfeger W, Feiring A, Smart B, Behr F, Vogel H, McKusick B "Fluorine Compounds, Organic" in "Ullmann's Encyclopedia of Industrial Chemistry" 2005, Wiley-VCH, Weinheim. DOI:10.1002/14356007.a11_349
  16. ^ "Arşivlenmiş sayfa". 24 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 24 Eylül 2015. 
  17. ^ "HPV Robust Summaries and Test Plan" (PDF). Internet Archive. Archived from the original (PDF) on 2012-12-02. Retrieved 2019-01-03.
  18. ^ Yamanouchi K; Yokoyama K (1975). "Proceedings of the Xth International Congress for Nutrition: Symposium on Perfluorochemical Artificial Blood, Kyoto": 91.
  19. ^ "Arşivlenmiş kopya". 19 Mayıs 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Mayıs 2014. 
  20. ^ Platts DG; Fraser JF (2011). "Critical Care and Resuscitation". 13(1): 44–55.
  21. ^ Geyer RP (1975). "Proc. Xth Intern. Congress for Nutr.: Symp on Perfluorochemical Artif. Blood, Kyoto": 3–19.
  22. ^ Change, United Nations Framework Convention on Climate. "Kyoto Protocol". unfccc.int. Retrieved 2017-09-27.
  23. ^ "The Anode Effect 22 Şubat 2019 tarihinde Wayback Machine sitesinde arşivlendi.". aluminum-production.com.
  24. ^ Arşivlenmiş bağlantı climatevision.gov
  25. ^ "Arşivlenmiş dosya" (PDF). 7 Şubat 2014 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 7 Şubat 2014. 
  26. ^ Ralph Hill. "Flourinated Oils in Cosmetics 27 Şubat 2019 tarihinde Wayback Machine sitesinde arşivlendi.". beautymagonline.com.
  27. ^ Imamura Y; Minami M; Ueki M; Satoh B; Ikeda T (2003). "Use of perfluorocarbon liquid during vitrectomy for severe proliferative diabetic retinopathy 20 Nisan 2020 tarihinde Wayback Machine sitesinde arşivlendi.". Br J Ophthalmol. 87 (5): 563–566. doi:10.1136/bjo.87.5.563. PMC 1771679. PMID 12714393.
  28. ^ "Arşivlenmiş dosya" (PDF). 19 Mayıs 2014 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 19 Mayıs 2014. 
  29. ^ Banks, RE (1970). Fluorocarbons and their Derivatives, Second Edition. London: MacDonald & Co. (Publishers) Ltd. pp. 203–207. ISBN 978-0-356-02798-2.
  30. ^ "Octafluoronaphthalene 5 Şubat 2019 tarihinde Wayback Machine sitesinde arşivlendi.". ChemSpider.

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Flor</span>

Flor, atom numarası 9, atom ağırlığı 19, yoğunluğu 1,265 olan, kokusu ozonu andıran, kahverengimsi sarı renkte, halojenler grubunun ilk elementidir. 1529 yılında Georgius Agricola, kalsiyum florür bileşiğini tanımlamıştır. İlk defa 1886 yılında Henri Moissan tarafından izole edilmiştir.

<span class="mw-page-title-main">Hidrokarbon</span> tamamen hidrojen ve karbondan oluşan organik bileşik

Hidrokarbon, sadece karbon ve hidrojen atomlarından oluşan kimyasal bileşiklerin genel adı.

<span class="mw-page-title-main">Karbon</span> sembolü C ve atom numarası 6 olan kimyasal element; bilinen tüm yaşamın ortak unsuru

Karbon, doğada yaygın bulunan ametal kimyasal elementtir. Evrende bolluk bakımından altıncı sırada yer alan karbon, kızgın yıldızlarda hidrojenin termonükleer yanmasında temel rol oynar. Dünyada hem doğal halde, hem de başka elementlerle bileşik halinde bulunan karbon, ağırlık olarak Dünya'nın yerkabuğunun yaklaşık %0,2'sini oluşturur. En arı (katışıksız) biçimleri elmas ve grafittir; daha düşük arılık derecelerinde maden kömürünün, kok kömürünün ve odun kömürünün bileşeni olarak bulunur. Atmosferin yaklaşık % 0,05'ini oluşturan ve bütün doğal sularda erimiş olarak bulunan karbon dioksit, kireç taşı ve mermer gibi karbonat mineralleri, kömürün, petrolün ve doğalgazın başlıca yapıtaşları olan hidrokarbonlar, en bol bulunan bileşikleridir.

<span class="mw-page-title-main">Soy gaz</span> Kimyasal element grubu

Soy gaz veya asal gaz, standart şartlar altında her biri, diğer elementlere kıyasla daha düşük kimyasal reaktifliğe sahip, kokusuz, renksiz, tek atomlu gaz olan kimyasal element grubudur. Helyum (He), neon (Ne), argon (Ar), kripton (Kr), ksenon (Xe) ve radon (Rn) doğal olarak bulunan altı soy gazdır ve tamamı ametaldir. Her biri periyodik tablonun sırasıyla ilk altı periyodunda, 18. grubunda (8A) yer alır. Grupta yer alan oganesson (Og) için ise önceleri soy gaz olabileceği ihtimali üzerinde durulsa da günümüzde metalik görünümlü reaktif bir katı olduğu öngörülmektedir.

<span class="mw-page-title-main">Teflon</span>

Teflon, politetrafloroetilen (PTFE) polimerin ticârî adıdır. PTFE, florlanmış etilen polimerdir. Monomeri tetrafloroetilendir.

<span class="mw-page-title-main">Hidroflorokarbon</span> Flor ve hidrojen atomları içeren insan yapımı organik bileşikler

Hidroflorokarbonlar, hidrojen ve flor içeren organik moleküllerdir. Klimalarda ve buz dolaplarında soğutucu madde olarak kullanılmaktadırlar. Ozon tabakasına daha az zararlı oldukları için kloroflorokarbonlara alternatif olarak geliştirilmiştir. Buna karşın ısıyı tutma özelliği nedeniyle küresel ısınma açısından sera gazlarından biridir.

<span class="mw-page-title-main">Kripton diflorür</span> kimyasal bileşik

Kripton diflorür, KrF2 kripton ve florun oluşturduğu kimyasal bileşiktir. Keşfedilen ilk kripton bileşiği olan kripton diflorür uçucu renksiz bir katıdır. KrF2'nin yapısı lineerdir ve Kr-F mesafesi 188,9 pm'dir. Güçlü Lewis asitleri ile reaksiyona girerek KrF+ ve Kr2F3+ katyon tuzlarını oluşturur. KrF2 en kolay ve en fazla üretilebilen kripton bileşiğidir. Oldukça güçlü bir oksitleyici ajan olan kripton diflorür, ksenonu ksenon hekzaflorüre veya iyotu iyot pentaflorüre dönüştürebilme kabiliyetine sahiptir. Bu oksidant özelliği ile florürleri ve altını oksitlemede kullanılır.

<span class="mw-page-title-main">Alkin</span>

Alkinler, hidrokarbon zincirinde en az bir tane karbon-karbon üçlü bağı içeren organik bileşiklerdir. Yapısında sadece bir tane karbon-karbon üçlü bağı bulunduran alkinler, homolog bir sıra oluştururlar ve CnH2n-2 n=2,3,4... genel formülüne sahiptirler. En basit alkin asetilendir (C2H2, etin). Alkinlerin yapısında en az karbon–karbon üçlü bağı bulunduğundan ve moleküldeki karbonlar bağlıya bileceği en fazla hidrojen atomunu bağlamadıklarından doymamış moleküller kategorisine girerler. İlk kez en basit alkin, asetilen ünlü İngiliz kimyager Humphry Davy’in kuzeni olan Edmund Davy tarafından bulunmuştur.

<span class="mw-page-title-main">Ksenon diflorür</span>

Ksenon diflorür, kimyasal formülü XeF2 olan güçlü bir florürleyici maddedir. En stabil ksenon bileşiklerinden biridir. Kovalent inorganik florürlerin birçoğu gibi neme duyarlıdır. Işık veya su buharı ile temas ettiğinde ayrışır. Ksenon diflorür, yoğun beyaz kristalli bir katıdır. Mide bulandırıcı kokuya ve düşük buhar basıncına sahiptir.

<span class="mw-page-title-main">Lityum florür</span> kimyasal bileşik

Lityum florür LiF formülüne sahip inorganik bileşik. Renksiz bir katıdır, kristal boyutu küçüldükçe beyaz renge geçiş görülür. Kokusuz olmasına rağmen tuzlu-acı bir tada sahiptir. Sodyum klorüre benzer yapıdadır fakat suda daha az çözünür. Esas olarak erimiş tuz yapısında kullanılır. LiF'nin elementlerinden oluşumu ikinci en yüksek reaktant kütlesi başına enerjiyi verir, birinci BeO'dur.

<span class="mw-page-title-main">Polisülfür</span>

Polisülfürler kükürt atom zincirleri içeren bir sınıf kimyasal bileşiklerdir. Polisülfürler iki ana sınıfa ayrılır: anyonlar ve organik polisülfürler. Anyonlar S2−ngenel formülüne sahiptir. Bu anyonlar hidrojen polisülfürlerin H2Skonjüge bazlarıdır. Organik polisülfürler genellikle RSnR formülüne sahiptir, burada R = alkil veya arildir.

İyot pentafluorür, IF5 kimyasal formülüne sahip florür ve iyottan oluşan bir interhalojen bileşiktir. 3.250 g cm−3 yoğunluğa sahip, renksiz veya sarı bir sıvıdır. İlk olarak 1891'de Henri Moissan tarafından flor gazı içinde katı iyot yakılarak sentezlendi. Bu ekzotermik reaksiyon, reaksiyon koşulları iyileştirilmiş olmasına rağmen hala iyot pentaflorür üretmek için kullanılır. I2 + 5 F2 → 2 IF5

<span class="mw-page-title-main">Hipofloröz asit</span>

Hipofloröz asit, kimyasal formül HOF, florun bilinen tek oksoasididir. Hipofloritlerde oksijenin oksidasyon durumu 0'dır. Aynı zamanda katı olarak izole edilebilen tek hipohaloid asittir. HOF, suyun, hidrojen florür, oksijen diflorür, hidrojen peroksit, ozon ve oksijen üreten flor ile oksidasyonunda bir ara maddedir. HOF oda sıcaklığında patlayıcıdır, HF ve O2 oluşturur:

2 HOF → 2 HF + O2
<span class="mw-page-title-main">Neopentan</span> kimyasal bileşik

2,2-dimetilpropan olarak da adlandırılan neopentan, beş karbon atomlu çift dallı zincirli bir alkandır. Neopentan, oda sıcaklığında ve basıncında yanıcı bir gazdır, soğuk bir günde, bir buz banyosunda veya daha yüksek bir basınca sıkıştırıldığında oldukça uçucu bir sıvıya dönüşebilir.

Tetrafloroetilen (TFE), C2F4 kimyasal formülüne sahip bir florokarbondur. En basit perflorlu alkendir. Bu gaz hâldeki türler öncelikle floropolimerlerin endüstriyel hazırlanmasında kullanılır. En çok bilinen polimeri PTFE'dir (Teflon).

<span class="mw-page-title-main">Karbon tetraflorür</span>

Karbon tetraflorür veya R-14 olarak da bilinen tetraflorometan, en basit perflorokarbondur (CF4). IUPAC adından da anlaşılacağı gibi, tetraflorometan, hidrokarbon metanın perflorlanmış karşılığıdır. Tetraflorometan kullanışlı bir soğutucudur, lâkin aynı zamanda da güçlü bir sera gazıdır.

Halometan bileşikleri, bir veya daha fazla hidrojen atomunun halojen atomları (flor, klor, brom veya iyot) ile değiştirildiği metan (CH4) türevleridir. Halometanlar hem özellikle deniz ortamlarında doğal olarak bulunurlar hem de özellikle soğutucu akışkanlar, çözücüler, itici gazlar ve fumigantlar olarak insan yapımıdır. Kloroflorokarbonlar da dâhil olmak üzere birçoğu, yüksek rakımlarda bulunan ultraviyole ışığa maruz kaldıklarında aktif hâle geldikleri ve Dünya'nın koruyucu ozon tabakasını incelttikleri için geniş ilgi gördü.

Joseph H. Simons, Pennsylvania Eyalet Üniversitesi'nde kimya mühendisliği profesörü iken 1930'larda florokarbonları seri üretmenin ilk pratik yollarından birini keşfetmesiyle ünlenen ABD'li bir kimyagerdir. 1950 yılında kendisi ve 3M'in diğer çalışanları elektrokimyasal florlama prosedürü için bir patent aldı.

Floropolimer, çoklu karbon–flor bağlarına sahip, florokarbon bazlı bir polimerlerdir. Solventlere, asitlere ve bazlara karşı yüksek direnç ile karakterize edilir. En iyi bilinen floropolimer, DuPont Company'nin ticari markası olan "Teflon" markası altındaki politetrafloroetilendir.

Perflorodekalin hidrojen atomlarının flor atomlarıyla değiştirildiği bir dekalin türevi olan bir perflorokarbondur. Kimyasal ve biyolojik olarak inerttir ve 400 °C'ye kadar stabildir. Çeşitli uygulamaları, gazları çözme yeteneğinden yararlanır.