İçeriğe atla

Flip flop

Bistable multivibratör (R1, R2 = 1 kΩ, R3, R4 = 10 kΩ).

Bir elektronik devreye çalışma gerilimi uygulandığı sürece durumunu ve buna bağlı olarak çıkışındaki değeri devamlı olarak koruyan multivibratör çeşidi Flip Flop (yaz-boz) olarak isimlendirilir. FF olarak sembolize edilir. Lojik kapılar ile oluşturduğumuz flip floplar lojik devrelerde en önemli bellek elemanlarıdır. FF'ler için çift kararlı multivibratör (bistable multivibratör) terimi de kullanılır. FF'lerin tetikleme girişine uygulanan kare veya dikdörtgen şeklindeki sinyaller, tetikleme sinyali/palsi olarak adlandırılır. FF devresi tetikleme sinyalinin pozitif kenarında tetikleniyorsa pozitif kenar tetikleme, negatif kenarından tetikleniyorsa negatif kenar tetiklemeli devre olarak tanımlanır.

Birçok FF türü vardır. Bunlardan en çok kullanılanları:

  • R-S (reset-set) tipi FF
  • Tetiklemeli (clocked) R-S FF
  • J-K Tipi FF
  • Master Slave tipi FF
  • D (data) tipi FF
  • T(Toggle) tipi FF'dir

Tarihsel olarak flip-flop terimi, hem seviye tetiklemeli (asenkron, şeffaf veya opak) hem de tek veri bitini kapılar kullanarak depolayan kenar tetiklemeli (senkron veya saatli) devrelere genel olarak atıfta bulunmuştur.[1] Modern yazarlar flip-flop terimini yalnızca kenar tetiklemeli depolama elemanları için ve mandalları seviye tetiklemeli olanlar için ayırmıştır.[2][3] "Kenar tetiklemeli" ve "seviye tetiklemeli" terimleri belirsizliği önlemek için kullanılabilir.[4]

Seviye tetiklemeli bir mandal etkinleştirildiğinde şeffaf hale gelir, ancak kenar tetiklemeli bir flip-flop'un çıkışı yalnızca bir saat kenarında (pozitif veya negatif gidiş) değişir.

Farklı tipte flip-floplar ve mandallar genellikle çip başına birden çok elemanla entegre devre olarak vardır. Örneğin, 74HC75, 7400 serisinde dörtlü şeffaf bir mandaldır.

Kaynakça

[1] 15 Ocak 2019 tarihinde Wayback Machine sitesinde arşivlendi.

Notlar

  1. ^ For example, Digital Equipment Corporation's Logic Handfbook Flip Chip™ Modules 1969 edition calls transparent RS latches as "R/S Flip Flops" (http://www.bitsavers.org/pdf/dec/handbooks/Digital_Logic_Handbook_1969.pdf 30 Mayıs 2024 tarihinde Wayback Machine sitesinde arşivlendi. page 44)
  2. ^ Pedroni, Volnei A. (2008). Digital electronics and design with VHDL. Morgan Kaufmann. s. 329. ISBN 978-0-12-374270-4. 
  3. ^ Latches and Flip Flops 5 Ekim 2016 tarihinde Wayback Machine sitesinde arşivlendi. (EE 42/100 Lecture 24 from Berkeley) "...Sometimes the terms flip-flop and latch are used interchangeably..."
  4. ^ Roth, Charles H. Jr. (1995). "Latches and Flip-Flops". Fundamentals of Logic Design (4. bas.). PWS. ISBN 9780534954727. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Merkezî işlem birimi</span> bir bilgisayar programının talimatlarını, talimatlar tarafından belirtilen temel aritmetik, mantıksal, kontrol ve giriş/çıkış (G/Ç) işlemlerini gerçekleştirerek yürüten ve diğer bileşenleri koordine eden bir bilgisayar içindeki elektro

Merkezî işlem birimi, dijital bilgisayarların veri işleyen ve yazılım komutlarını gerçekleştiren bölümüdür. Çalıştırılmakta olan yazılımın içinde bulunan komutları işler. Mikroişlemciler ise tek bir yonga içine yerleştirilmiş bir merkezî işlem birimidir. 1970'lerin ortasından itibaren gelişen mikroişlemciler ve bunların kullanımı, günümüzde MİB teriminin genel olarak mikroişlemciler yerine de kullanılması sonucunu doğurmuştur.

D flip-flop, 1 bitlik hafıza. Tetikleme darbesi ile tutuğu değeri bırakır ve yeni gelen değeri tutmaya başlar.

<span class="mw-page-title-main">Elektronik devre elemanları</span> elektronik devreyi meydana getiren ögeler

Elektronik devre elemanları, elektrik devresinin çalışabilmesi için kullanılan parçalara denir. Aktif ve pasif devre elemanları olarak iki gruba ayrılır.

<span class="mw-page-title-main">Diyot</span> Yalnızca bir yönde akım geçiren devre elemanı.

Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki dirençleri ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır.

<span class="mw-page-title-main">Elektrik akımı</span> elektrik yükü akışı

Elektrik akımı, elektriksel akım veya cereyan, en kısa tanımıyla elektriksel yük taşıyan parçacıkların hareketidir. Bu yük genellikle elektrik devrelerindeki kabloların içerisinde hareket eden elektronlar tarafından taşınmaktadır. Ayrıca, elektrolit içerisindeki iyonlar tarafından ya da plazma içindeki hem iyonlar hem de elektronlar tarafından taşınabilmektedir.

<span class="mw-page-title-main">Aritmetik mantık birimi</span>

Aritmetik mantık birimi (AMB) aritmetik ve mantık işlemlerini gerçekleştiren bir dijital devredir. AMB en basit işlemi gerçekleştiren mikro denetleyiciden, en karmaşık mikroişlemciye sahip bir bilgisayara kadar tüm işlemcilerin yapıtaşıdır. Modern bilgisayarların içinde bulunan mikroişlemcilerin ve ekran kartlarının içinde çok karışık ve güçlü AMB'ler bulunmaktadır. AMB kavramına ilk olarak 1945 yılında matematikçi John von Neumann EDVAC adlı yeni bir bilgisayar üzerine bulgularını anlatan raporunda değinmiştir.

<span class="mw-page-title-main">Röle</span> tamamen izole edilmiş ikinci bir devre tarafından bir elektrik devresinin açılıp kapanmasına izin veren elektrikli cihaz

Röle, elektriksel olarak çalıştırılan, elektromanyetik bir anahtardır. Yani üzerinden akım geçtiği zaman çalışan devre elemanıdır. Röle; bobin, palet ve kontak olmak üzere üç bölümden meydana gelir. Bobin kısmı rölenin giriş kısmıdır. Palet ve kontak kısmının bobin ile herhangi bir elektriksel bağlantısı yoktur. Röle, tek veya çoklu kontrol sinyalleri için birçok giriş terminali ve birçok çalışma kontağı terminalinden oluşur. Röle, birden çok kontak düzenlemesinde, örneğin; kontakları temas ettirme, kontakların temasını kesme veya bu iki durumun kombinasyonları gibi herhangi bir sayıda kontaklı olabilir.

<span class="mw-page-title-main">Osiloskop</span>

Elektriksel işaretlerin ölçülüp değerlendirilmesinde kullanılan aletler içinde en geniş ölçüm olanaklarına sahip olan osiloskop, işaretin dalga şeklinin, frekansının ve genliğinin aynı anda belirlenebilmesini sağlar. Dalga şeklini grafik olarak ekranda gösterir. Yani elektrik dalga sinyali çizer. Dalga sinyalinin, frekansını ve genliğini de öğrenmemizi sağlar. Osiloskop bir elektrik devresine her zaman paralel bağlanır. Çünkü iç direnci çok yüksektir.

<span class="mw-page-title-main">Kesme (bilgisayar)</span>

İş kesme, bilgi işlemede donanımsal olarak olağanüstü durumu belirtmek için gönderilen asenkron sinyal veya yazılımda işletimde değişiklik olacağını göstermek için ihtiyaç duyulan senkronize olaydır.

Verilog elektronik sistemleri modellemek için kullanılan bir donanım tanımlama dilidir. Verilog analog, sayısal ve karışık işaretli devrelerin tasarımını, doğrulanmasını ve yürütülmesini değişik düzeylerde desteklemektedir. Verilog dilinin tasarımcıları dilin C programlama diline yakın bir söz dizimine sahip olmasını istemişlerdir. Böylece bu dile yatkın olan mühendislerin dili kolayca kullanmasını amaçlamışlardır. Dil küçük/büyük harf duyarlılığına sahiptir ve temel denetim akışının “if” ve “while” gibi anahtar kelimeleri, C'ye benzemektedir. Verilog birkaç temel yönde C’den farklıdır. Verilog bir blok kodu tanımlamak için kıvrık parantezler yerine Begin/End kullanmaktadır. Verilog 95 ve 2001 işaretçi veya yinelemeli alt yordamlar yapılarına sahip değildir fakat SystemVerilog bu özelliklere sahiptir. Son olarak Donanım Tanımlama Dilleri için çok önemli olan zaman kavramı C dilinde bulunmamaktadır. Verilog geleneksel programlama dilleri gibi basamaklarını tam olarak ardışık bir şekilde yürütmez. Verilog tasarımı modüller arasında bir hiyerarşi bulundurur. Modüller bir takım giriş, çıkış ve çift yönlü portlar şeklinde tanımlanır. Bir modül içinde yazmaç ve kablo listesi bulunur. Eş zamanlı ve ardışık ifadeler modülün davranışını; portların, kabloların ve yazmaçların arasındaki ilişki ile tanımlar. Ardışık ifadeler bir begin/end bloğuna konur ve blokla beraber ardışık olarak yürütülür. Tüm eş zamanlı ifadeler ve begin/end blokları koşut olarak yürütülür. Bir modül aynı zamanda diğer bir modülün bir veya daha çok örneğini içererek bir alt-davranışı belirtebilir. Eğer tasarımdaki modüller sadece sentezlenebilir ifadeler içeriyorsa bu tasarımın donanımda gerçekleştirilecek temel bileşenlerini ve bağlantılarını içeren netlist, yazılım sayesinde sentezlenebilir. Elde edilen bu netlist bir tümleşik devreyi tanımlamak amacıyla kullanılabilir.

Anahtarli kapasite "ayrık zamanlı" sinyal işleme için kullanılan bir tür ʽelektronik devreʼ elemanıdır. Bu devre elemanının çalışması "anahtar" açılınca ve kapanınca şarjları kondansatörlerden içeri ve dışarı verme şeklinde olmaktadır. Genellikle, birbiri ile çakışmayan sinyaller anahtarları kontrol etmek için kullanılır ve bunun için tüm anahtarların hepsi aynı zamanda kapatılmamaktadır. Bu elemanlarla birlikte uygulanan filtrelere "anahtarlı-kapasitör filtreleri" ismi verilmekte ve bunlar sadece kapasitansların arasında bulunan oranlara bağımlı olmaktadır. Bu nitelik, daha dakik olarak belirlenen resistörlar ve kondansatörlerin yapımlanması ekonomik olmadığı hallerde bu tip filtrelerin entergre devreler içinde kullanmak için çok daha uygun olmalarını saglamaktadır.

Saçılma parametreleri veya S parametreleri, sürekli hâlde elektrik sinyalleri ile uyarılmakta olan lineer elektrik devrelerinin davranışlarını tanımlayan parametreler. S parametreleri elektrik mühendisliği, elektronik mühendisliği, haberleşme sistemleri ve özellikle mikrodalga mühendisliğinde kullanılır.

<span class="mw-page-title-main">Kare dalga</span>

Kare dalga, genliğin sabit bir frekansla, iki değer, maksimum ve minumum, arasında eşit süreler kalarak değiştiği, sinüsoidal olmayan periyodik dalgadır. İdeal kare dalgada genliğin iki seviye arasında geçişi anlıktır; bu sırada herhangi bir gecikme yaşanmaz. Ancak bu durum fiziksel sistemlerde gerçeklenebilir değildir. Kare dalgalar elektronikte ve sinyal işlemede sıkça kullanılır. Kare dalga, genlik seviyelerinde kalma süresi farklı olabilen dikdörtgen dalganın özel halidir.

<span class="mw-page-title-main">Amplifikatör</span>

Amplifikatör veya yükselteç, elektronik sinyalleri artırmak için kullanılan elektronik cihazlardır. Amplifikatörler bu işlemi bir güç sağlayacısından alıp bu çıkış sinyallerinin şeklini eşleştirerek yaparlar. Yani, bir amplifikatör güç sağlayıcısından aldığı sinyalleri düzenler.

Dijital Devre teorisinde, “Sıralı Mantık” devrenin çıktılarının sadece şu anki durumuna değil, aynı zamanda geçmişteki Dijital Sinyal girdilerine de bağlı olduğu mantık devresi yapısıdır. Sıralı mantık devreleri kombinasyonel mantık devrelerinin aksine sadece şu anki inputlara bağlı değildir. Şöyle ki, sıralı mantık devrelerinin durum hafızaları varken, kombinasyonel mantık devrelerinin yoktur. Diğer bir deyişle, sıralı mantık devreleri hafıza elemanı taşıyan kombinasyonel devrelerdir.

Fiziksel kopyalanamayan fonksiyon (FKF), çözülmesi kolay fakat tahmin edilmesi oldukça zor olan bir fonksiyonun fiziksel bir yapıda şekillendiği bir oluşumdur.

Bilgi teknolojisi ve bilgisayar biliminde eğer önceki olayları veya kullanıcı etkileşimlerini hatırlamak için tasarlandıysa biliminde bir sistem durumsal olarak ifade edilmiştir, hatırlanan bilgiye ise sistemin durumu denir.

Espresso mantık sadeleştiricisi, dijital mantık kapısı devrelerinin karmaşıklığını etkili bir şekilde azaltmak için sezgisel ve özel algoritmalar kullanan bir bilgisayar programıdır. Espresso, IBM'den Robert K. Brayton tarafından geliştirilmiştir. Richard L. Rudell daha sonra 1986'da "PLA Sentezi için Çok Değerlikli Mantık Minimizasyonu" başlığı altında Espresso-MV varyantını yayınladı. Espresso birçok türevine ilham vermiştir.

<span class="mw-page-title-main">Artımlı kodlayıcı</span>

Artımlı kodlayıcı (enkoder), cihaz hareket ettirildiğinde iki A ve B çıkış sinyalli darbeler veren, doğrusal veya döner elektromekanik bir cihazdır. "A" ve "B" sinyalleri birlikte hareketin hem oluşumunu hem de yönünü gösterir. Çoğu artımlı kodlayıcının ek bir çıkış sinyali vardır ve bu sinyale, kodlayıcının belirli bir referans konumunda olduğunu gösteren, genelde "indeks" veya "Z" denilir. Ayrıca bazı kodlayıcılar, rulman arızası veya sensör arızası gibi dahili arızayı gösteren durum çıkışı ("alarm") verir.