İçeriğe atla

Finsler–Hadwiger teoremi

Finsler-Hadwiger teoremi

Finsler–Hadwiger teoremi, bir tepe noktasını paylaşan herhangi iki kareden türetilen üçüncü bir kareyi tanımlayan Öklid düzlem geometrisindeki ifadedir. Teorem adını, üçgenin kenar uzunlukları ve alanıyla ilgili Hadwiger-Finsler eşitsizliğini yayınladıkları makalenin bir parçası olarak 1937'de yayınlayan Alman ve İsviçreli matematikçi Paul Finsler ile İsviçreli matematikçi Hugo Hadwiger'den almıştır.[1]

Açıklama

Teoremi ifade etmek için, ve 'nin ortak tepe noktasına sahip iki kare olduğunu varsayalım. ve , sırasıyla ve doğrularının orta noktaları ve ve , iki karenin merkezi olsun. Daha sonra teorem, dörtgenin de bir kare olduğunu belirtir.[2]

karesine, verilen iki karenin Finsler-Hadwiger karesi denir.[3]

Uygulaması

Finsler–Hadwiger teoreminin tekrarlanan uygulaması, keyfi bir dörtgenin kenarlarına inşa edilmiş dört kareden oluşan merkezler aracılığıyla parçaların uygunluğu ve dikliği üzerinde Van Aubel teoremini kanıtlamak için kullanılabilir. Her bir ardışık kare çifti, teoremin bir örneğini oluşturur ve bu örneklerin iki karşıt Finsler-Hadwiger karesi çifti, aynı türetilmiş kareye sahip teoremin diğer iki örneğini oluşturur.[4]

İspat

1. ve kareleri, şekil (a)'da gösterildiği gibi ortak bir tepe noktasını paylaşsın. Daha sonra, orijinal karelerin ve merkezleri ile birlikte ve segmentlerinin orta noktaları ve , başka bir karesinin köşeleridir.

2. ve karelerinin ve köşegenlerini şekil (b)'de gösterildiği gibi çizin. O halde , gölgeli dörtgen ile ilişkili Varignon paralelkenarıdır.

3. 'nin bir kare olduğunu göstermek için, 'nün ve çizgili köşegenlerinin dikey ve eşit uzunlukta olduğunu göstermemiz gerekir. Şekil (c), , , olduğunu ve böylece olduğunu göstermektedir. Böylece . Ancak ve ; dolayısıyla 'dir.[5]

Kaynakça

  1. ^ Finsler, Paul; Hadwiger, Hugo (1937), "Einige Relationen im Dreieck", Commentarii Mathematici Helvetici (Almanca), 10 (1), ss. 316-326, doi:10.1007/BF01214300, MR 1509584 . See in particular p.324.
  2. ^ Alsina, Claudi; Nelsen, Roger B. (2010), "The Finsler–Hadwiger Theorem 8.5", Charming Proofs: A Journey Into Elegant Mathematics, Mathematical Association of America, s. 125, ISBN 9780883853481 .
  3. ^ Detemple, Duane; Harold, Sonia (1996), "A round-up of square problems", Mathematics Magazine, 69 (1), ss. 15-27, doi:10.1080/0025570X.1996.11996375, JSTOR 2691390, MR 1573131 . See problem 8, pp. 20–21.
  4. ^ Detemple & Harold (1996), problem 15, pp. 25–26.
  5. ^ Claudi Alsina & Roger B. Nelsen, (2010), A Cornucopia of Quadrilaterals, ss. 21-22, AMS/MAA, Dolciani Mathematical Expositions, Vol. 55, 9781470454654

Konuyla ilgili yayınlar

  • Fisher, J. C., Ruoff, D., & Shilleto, J. (1981). Polygons and polynomials. In The Geometric Vein (ss. 321-333). Springer, New York, NY.
  • Detemple, D., & Harold, S. (1996). A round-up of square problems. Mathematics Magazine, 69(1), ss. 15-27.
  • Claudi Alsina, Roger B. Nelsen: Charming Proofs: A Journey Into Elegant Mathematics. MAA 2010, ISBN 978-0-88385-348-1, s. 125 (books.google.de 7 Mart 2016 tarihinde Wayback Machine sitesinde arşivlendi.).
  • Frizta Edius & Vina Setiawaty, (2019), Expansion of Finsler-Hadwiger Theorem, Paya Lebar Methodist Girls’ School (Secondary), A project presented to the Singapore Mathematical Project Festival, Proje Raporu[]

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Pappus'un alan teoremi</span> rastgele bir üçgenin üç kenarına iliştirilmiş üç paralelkenarın alanları arasındaki ilişkiyi verir

Pappus'un alan teoremi, verilen herhangi bir üçgenin üç kenarına yaslanmış üç paralelkenarın alanları arasındaki ilişkiyi tanımlar. Pisagor teoreminin bir genellemesi olarak da düşünülebilecek teorem, adını onu keşfeden Yunan matematikçi İskenderiyeli Pappus'tan almıştır.

<span class="mw-page-title-main">Gnomon teoremi</span> Bir gnomonda meydana gelen belirli paralelkenarlar eşit büyüklükte alanlara sahiptir.

Gnomon teoremi, bir gnomon'da meydana gelen belirli paralelkenarların eşit büyüklükte alanlara sahip olduğunu belirtir. Gnomon, geometride benzer bir paralelkenarı daha büyük bir paralelkenarın bir köşesinden çıkararak oluşturulan bir düzlem şeklidir; veya daha genel olarak, belirli bir şekle eklendiğinde, aynı şekle sahip daha büyük bir şekil oluşturan bir şekildir.

<span class="mw-page-title-main">Hipokrat ayı</span>

Geometride adını Sakız Adalı Hipokrat'tan sonra alan Hipokrat ayı, iki çemberden oluşan yaylarla sınırlanmış bir aydır, daha küçük olanın çapı, daha büyük çember üzerinde dik bir açıyı kapsayan bir kirişe sahiptir.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Brahmagupta teoremi</span>

Geometride, Brahmagupta teoremi, eğer bir kirişler dörtgeni ortodiyagonal ise, o zaman köşegenlerin kesişme noktasından bir kenara çizilen dikmenin karşı kenarı daima ikiye böldüğünü belirtir. Adını Hint matematikçi Brahmagupta'dan (598-668) almıştır.

<span class="mw-page-title-main">İngiliz bayrağı teoremi</span>

Öklid geometrisinde, İngiliz bayrağı teoremi, dikdörtgeni içinde bir noktası seçilirse, 'den dikdörtgenin iki karşıt köşesine olan Öklid mesafelerinin karelerinin toplamının, diğer iki karşıt köşenin toplamına eşit olduğunu söyler. Denklem olarak aşağıdaki şekilde gösterilir:

<span class="mw-page-title-main">Kelebek teoremi</span> Bir çemberin başka iki kirişinin üzerinden çizilen kirişin orta noktası hakkındaki teorem

Kelebek teoremi, Öklid geometrisinin klasik bir sonucudur ve aşağıdaki gibi ifade edilebilir:

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

<span class="mw-page-title-main">Euler dörtgen teoremi</span>

Leonhard Euler (1707–1783) adını taşıyan Euler dörtgen teoremi veya Euler'in dörtgenler yasası, dışbükey bir dörtgenin kenarları ile köşegenleri arasındaki ilişkiyi açıklar. Pisagor teoreminin genellemesi olarak görülebilecek Paralelkenar yasasının bir genellemesidir. Bu nedenle Pisagor teoreminin dörtgenler açısından yeniden ifade edilmesi bazen Euler-Pisagor teoremi olarak adlandırılır.

<span class="mw-page-title-main">Anne teoremi</span>

Fransız matematikçi Pierre-Leon Anne'in (1806-1850) adını taşıyan Anne teoremi, dışbükey dörtgen içindeki belirli alanların eşitliğini tanımlayan Öklid geometrisinden bir teoremdir.

<span class="mw-page-title-main">Batlamyus eşitsizliği</span>

Öklid geometrisinde, Batlamyus eşitsizliği, düzlemde veya daha yüksek boyutlu bir uzayda dört nokta tarafından oluşturulan altı uzunluğu ilişkilendirir. Herhangi bir A, B, C ve D noktası için aşağıdaki eşitsizliğin geçerli olduğunu belirtir:

.

Öklid geometrisinde, Erdős–Mordell eşitsizliği herhangi bir üçgeni ve içindeki noktası için, 'den kenarlara olan uzunlukların toplamının, 'den köşelere olan uzunlukların toplamının yarısına eşit veya daha az olduğunu belirten teoremdir. Teorem, adını Macar matematikçi Paul Erdős ve Amerika doğumlu İngiliz matematikçi Louis Mordell'den almıştır. Erdős (1935) eşitsizliği kanıtlama problemini ortaya attı; iki yıl sonra tarafından bir kanıt sağlandı. Ancak bu çözüm çok basit değildi. Sonraki basit ispatlar daha sonra Kazarinoff (1957), Bankoff (1958) ve Alsina & Nelsen (2007) tarafından verilmiştir.

<span class="mw-page-title-main">Çift merkezli dörtgen</span>

Öklid geometrisinde, bir çift merkezli dörtgen, hem bir iç teğet çembere hem de çevrel çembere sahip olan bir dışbükey (konveks) dörtgendir. Bu çemberlerin çevreleri, yarıçapları ve merkezlerine sırasıyla iç çap (inradius) ve çevrel çap (circumradius), iç merkez (incenter) ve çevrel merkez (circumcenter) denir. Tanımdan, çift merkezli dörtgenlerin hem teğetler dörtgeninin hem de kirişler dörtgeninin tüm özelliklerine sahip olduğu anlaşılmaktadır. Bu dörtgenler için diğer isimler kiriş-teğet dörtgeni ve iç teğet ve dış teğet dörtgenidir. Ayrıca nadiren çift çemberli dörtgen ve çift işaretlenmiş dörtgen olarak adlandırılmıştır.

Matematikte Hadwiger–Finsler eşitsizliği, Öklid düzlemindeki üçgen geometrisinin bir sonucudur. Düzlemdeki bir üçgenin kenar uzunlukları , ve ve alanı ile gösterilirse, o zaman

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

<span class="mw-page-title-main">Kirişler dörtgeni</span> tüm köşeleri tek bir çember üzerinde yer alan dörtgen

Öklid geometrisinde, bir kirişler dörtgeni veya çembersel dörtgen veya çevrimsel dörtgen, köşeleri tek bir çember üzerinde bulunan bir dörtgendir. Bu çembere çevrel çember denir ve köşelerin aynı çember içinde olduğu söylenir. Çemberin merkezi ve yarıçapı sırasıyla çevrel merkez ve çevrel yarıçap olarak adlandırılır. Bu dörtgenler için kullanılan diğer isimler eş çember dörtgeni ve kordal dörtgendir, ikincisi, dörtgenin kenarları çemberin kirişleri olduğu içindir. Genellikle dörtgenin dışbükey (konveks) olduğu varsayılır, ancak çapraz çevrimsel dörtgenler de vardır. Aşağıda verilen formüller ve özellikler dışbükey durumda geçerlidir.