İçeriğe atla

Finansal matematik

Finansal matematik, ya da yabancı dillerdeki yaygınlaşmış adıyla matematiksel finans, finans problemlerinin matematiksel modellenmesiyle ilgilenen uygulamalı matematiğin ve finansın ortak bir alt dalıdır. Sıklıkla, Nicel finans veya Kantitatif finans adlarıyla da anılır. Hesaplamalı finans ve finans mühendisliği ile büyük ölçüde örtüşür. Finansal matematiğin altında yatan teorileri de kapsayan finansal iktisat alanıyla da yakın bir bağlantısı vardır.

Fransız matematikçi Louis Bachelier'in 1900'de "Théorie de la spéculation" başlığıyla yazdığı doktora tezi[1] finansal matematiğin ilk ciddi çalışması olarak genel kabul görmektedir. 1970li yıllarda Fischer Black, Myron Scholes and Robert Mertonun opsiyon fiyatlandırma teorisine yönelik ve Merton ve Scholes'un 1997'de ekonomi alanında Nobel Ödülü[2] almasına vesile olan çalışmalarından sonra, finansal matematik daha ciddi bir disiplin olma yolunda hız kazanmıştır.

Türev ürünlerinin fiyatlandırılması ve risk ve portföy yönetimi finansın ileri derecede nicel teknikler gerektiren alt dallarıdır. Bu iki alanın en temel farkı, türev ürünlerinin fiyatlandırılmasında riske duyarsız olasılık kullanılırken risk ve portföy yönetiminde fiili, yani gerçek, olasılık kullanılmasıdır. Bu iki ayrı olasılığın ayrımını vurgulamak amacıyla türev ürünlerinin fiyatlandırılmasında ve risk ve portföy yönetiminde ise notasyonu kullanılır.

Türev ürünlerinin fiyatlandırılması

Türev ürünlerinin fiyatlandırılmasının amacı bir arz ve talebe bağlı olarak fiyatı değişen likit bir varlığın üzerine yazılan türev ürünlerinin hem alıcı hem de satıcı tarafından adil bir fiyatını bulmaktır. Bu türev ürünlerine örnek olarak egzotik opsiyonlar, ipoteğe dayalı menkul kıymetler, dönüştürülebilir tahviller vs. verilebilir. Adil bir fiyata ulaşmak için kullanılan teknikler elde olan bilgiyi geleceğe taşımaya vesile olan tekniklerdir. Bu sebeple, Ito hesabı, Brown hareketi, kısmi diferansiyel denklemler ve martingal süreçler sıklıkla kullanılan teorik araçlardır. Nümerik analiz içinde yer alan integral ve diferansiyel denklem hesaplama yöntemlerine ve Monte Carlo simülasyonuna modelleri programlamak için sıklıkla başvurulur.

Bu alandaki ilk çalışma Louis Bachelier tarafından yazılan doktora tezinde Brown hareketinin opsiyon fiyatlandırmasına yönelik uygulamasında görülür. Bachelier, Fransa borsasındaki hisse seneti fiyatlarının logaritmalarındaki zaman serisi değişimlerini bir rastgele yürüyüş olarak varsayıp, hisse senedi fiyatı dinamiğini bugünkü bilinen haliyle aritmetik Brown hareketi olarak modellemiştir.[3] Uzun bir aradan sonra, Fischer Black ve Myron Scholes'un,[4] (Robert Merton'un da ciddi katkılarıyla[5]) geometrik Brown hareketini opsiyon fiyatlandırmasında kullanması finansal matematik açısından ciddi bir süreci başlatmış oldu. Daha sonraları, Harrison ve Pliska tarafından varlık fiyatlamanın ilk temel teoremi kanıtlanmıştır ve martingal süreçler ve Girsanov teoremi vesilesiyle notasyonu literatüre girmiştir.

Kaynakça

  1. ^ Bachelier, Louis. "The Theory of Speculation (İngilizce)=". 15 Ağustos 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Ağustos 2024. 
  2. ^ Lindbeck, Assar. "The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1969-2007". Nobel Ödülü (İngilizce). 5 Nisan 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Ağustos 2024. 
  3. ^ Daha sonra Norbert Wiener tarafından verilen Brown hareketinin tanımı bu tez yazıldığında henüz bilinmiyordu.
  4. ^ Black, Fischer and Scholes, Myron, The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81(3) (1973), 637-654.
  5. ^ Merton, Robert C., Theory of rational option pricing (1973)

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

<span class="mw-page-title-main">Borsa</span> organize ticaret pazarı

Borsa veya sermaye piyasasının değişimi, alınıp satılabilir menkul kıymetler, stok, hisse senedi, emtialar, döviz, istikraz, vadeli kontratlar ve opsiyon sözleşmelerinin halka açık satıldığı veya satın alındığı organize bir piyasadır. Sermaye piyasası, üretken faaliyetleri destekleyen bir yatırım mekanizması oluşturur ve borsa ise bu amaca ulaşmak için kullanılan bir pazardır. Borsa, yatırımcıların faaliyetleri için güvenli bir ortam yaratmasının yanı sıra düzenli işlem mekanızmasına, güncel fiyatlara ve gerçek zamanlı alışveriş yapmaya sahip olmasından dolayı popülerdir.

<span class="mw-page-title-main">Opsiyon (finans)</span>

Finansta, opsiyonlar belirli bir malı, kıymeti veya finansal göstergeyi önceden anlaşılmış belli bir vade ve fiyattan alma-satma hakkı veren kontratlardır. Opsiyonu satın alan taraf opsiyon sözleşmesine karşılık, sözleşme tarihinde veya sözleşmede belirlene bir tarihte belli bir prim karşılığı ödemek zorundadır. Opsiyon sahibi opsiyon sözleşmesini yine sözleşmede belirlenen süre içinde veya sonunda kullanma hakkına sahip olmaktadır ancak vadeli işlemler sözleşmesinden farklı olarak herhangi alma veya satma yükümlülüğü yoktur. Bu sebeple, opsiyon hakkını alan tarafın kaybı en fazla ödediği primdir. Opsiyon hakkını satan taraf ise bu prim kazancını elde etmektedir.

<span class="mw-page-title-main">Matematikçi</span> matematik problemlerini çözmek için çalışmalarında kapsamlı bir matematik bilgisini kullanan kişi

Bir matematikçi, genellikle matematik problemlerini çözmek için çalışmalarında kapsamlı bir matematik bilgisini kullanan kişidir. Matematikçiler sayılar, veriler, miktar, yapı, alan, modeller ve değişimle ilgilenirler.

<span class="mw-page-title-main">Finans</span> Akademik disiplin

Finans, para, döviz ve sermaye varlıklarının incelenmesi ve disiplinidir. Mal ve hizmetlerin üretimi, dağıtımı ve tüketiminin incelenmesi olan ekonomi ile ilgilidir ancak ondan farklıdır. Kapsama dayalı olarak Finansal sistemlerde finansal faaliyetlere ilişkin disiplin, kişisel, kurumsal ve kamu finansmanı olarak ayrılabilir.

<span class="mw-page-title-main">Uluslararası döviz piyasası</span>

Yatırım, hedging, spekülasyon amacıyla yapılan hareketlerin gerçekleştiği döviz piyasaları 24 saat açıktır. Açılış Sidney ve Tokyo'da olur, Hong Kong ve Singapur, Bahreyn ile sürer Avrupa piyasalarına geçer. Frankfurt, Zürih, Londra'dan New York, Chicago piyasalarına ve Los Angeles ve San Fransisco'ya devam eder. İşlem hacmi, dünya ticaret hacminin 50 katından fazladır. İşlemlerde ağırlık Amerikan doları, Euro ve Japon yeni üzerindedir.

Black-Scholes denklemi, 1973 yılında Fischer Black ve Myron Scholes tarafından yazılan makalede elde edilen Black-Scholes formülünün kanıtında ilk defa elde edilmiş ve daha genel türev ürünleri için de uyarlanabilen bir kısmi diferensiyel denklemdir. Black-Scholes formülünün orijinal kanıtındaki esas fikir, opsiyon ve opsiyon dayanak varlığından oluşan bir portföy yaratmak ve bu portföyü küçük zaman aralıklarında dayanak varlığın piyasa fiyatına duyarsız hale getirmektir. Sonucunda, Black-Scholes denklemi elde edilir ve elde edilen diferansiyel denklem, değişik dönüşümler ve yerine koymalar vasıtasıyla ısı denklemine dönüştürülür.

Black-Scholes modeli, finansal matematikte bir opsiyon fiyatlama modelidir. İsmini, bu modeli 1973 yılında yayınlayan Fischer Black ve Myron Scholes'tan almıştır. Bu opsiyon modelinin sonucunda, halen opsiyon fiyatlamada piyasa katılımcılarınca yoğun olarak kullanılmakta olan Black-Scholes formülü elde edilmiştir. Black-Scholes modeli, aslında rassal hareketler izleyen sıvı moleküllerini ortaya koyan Brown hareketinin hisse fiyatlarına ve finansal hareketlere uyarlanması sonucu ortaya çıkmıştır. Daha önce bu uyarlamanın öncüsü sayılabilecek varsayımı Louis Bachelier 1900'de "Théorie de la spéculation" başlığıyla yazdığı doktora tezinde yapmıştır. Yine, benzer uyarlamalar Paul Samuelson, Sheen Kassouf, Edward O. Thorp and Case Sprenkle tarafından da yapılmıştır. Ancak, Black ve Scholes'un zamandaşlarının önüne geçtiği nokta opsiyon fiyatlarına ihtiyaç duyan opsiyon piyasa katılımcılarına piyasada gözlemlenen veri ve değişkenlerle pratik bir şekilde hesaplanabilen analitik bir formül ortaya koymalarıdır.

<span class="mw-page-title-main">William Forsyth Sharpe</span> Amerikalı ekonomist

William Forsyth Sharpe Amerikalı ekonomist. 1990 yılında, Harry Markowitz ve Merton Miller ile birlikte, Nobel Ekonomi Ödülü'nü kazanmıştır.

<span class="mw-page-title-main">Myron Scholes</span> araştırmacı

Myron Samuel Scholes, Amerikalı-Kanadalı ekonomisttir. 1997 yılında Robert C. Merton ile birlikte Nobel Ekonomi Ödülü'nü kazanmıştır. Black–Scholes modelinin yazarlarından biridir. Tüm binominal opsiyon modellerinin hepsi, bu orijinal konseptten köken almıştır.

Varant; finans sektöründe, varant yatırımcısına bir dayanak varlığı, belirli bir fiyattan ve belirli bir vade içerisinde alma ya da satma hakkı veren finansal enstrümandır. Temel olarak ALIM varantları ve SATIM varantları olarak ikiye ayrılmaktadır.

Stokastik süreç, Stokastik işlemi, zaman veya mekana göre değişen/evrilen olguları tanımlamak için kullanılan bir olasılık modelidir. Daha kapsamlı olarak, olasılık teorisinde, stokastik süreç, değişimi rastgele bir varyasyona bağlı olan bir değişken tarafından temsil edilen bazı sistemlerin gelişimini yansıtan bir zaman dizisidir. Bu, belirleyici süreç anlamına gelen deterministik sürecin olasılıkçı muadilidir. Sadece tek yönlü olarak değişebilen bir süreci tasvir etmek yerine bir stokastik veya rastgele süreçte, bazı belirsizlikler vardır. Hatta başlangıçtaki durum biliniyor olsa dahi sürecin gelişebileceği/değişebileceği bazı yönler vardır. Birçok stokastik süreçte, bir sonraki duruma veya konuma geçiş, yalnızca mevcut duruma bağlıdır ve işlemin önceki durumlarından veya değerlerinden bağımsızdır.

<span class="mw-page-title-main">Rastgele yürüyüş</span>

Rastgele yürüyüş (ya da rassal yürüyüş) matematiksel bir nesne olup, bir stokastik veya rastgele süreç olarak bilinir. Bu süreç, herhangi bir matematiksel uzayda –örneğin tamsayılar uzayı–atılan rastgele adımların toplamından oluşan patikayı tanımlamaya yöneliktir. Örneğin, bir molekülün sıvı veya gaz içerisinde izlediği yol, hayvanların yem arayışında takip ettiği patika, değişkenlik gösteren hisse fiyatları ve de bir borsa oyuncusunun finansal durumu rastgele yürüyüş modelleri ile tahmin edilebilir; ancak gerçekte tamamen rastlantısal olmama ihtimalleri de vardır. Bu örneklerin de gösterdiği gibi, rastgele yürüyüş modelinin birçok bilim dalında uygulama alanı mevcuttur; ekoloji, psikoloji, bilgisayar bilimleri, fizik, kimya, biyoloji ve ekonomi bunlara örnektir.

Bu liste, kayda değer kantitatif analistlerin bir listesidir; ayrıca § Çığır açan yayınlar ve Finansal ekonomistler listesi'ne bakınız.

Finansal matematikte risk hassasiyeti bir türev ürününün ya da bir portföyün değerinin değişken veya parametrelere karşı olan değişimini veren niceliktir. Risk hassasiyetleri ise bu niceliklerin hepsine birden verilen addır.

Black modeli ya da Black76 modeli, matematiksel finansta bir opsiyon fiyatlama modelidir. İsmini, bu modeli 1976 yılında yayınlayan Fischer Black'ten almıştır. Bu opsiyon modelinin sonucunda, halen opsiyon fiyatlamada piyasa katılımcılarınca yoğun olarak kullanılmakta olan Black formülü elde edilmiştir.

Finansta ve finansal matematikte binom modeli ya da Cox-Ross-Rubinstein modeli, opsiyon ya da türev ürünlerini fiyatlamada kullanılan nümerik bir yönteme verilen addır. Model, opsiyonların dayanak varlığının değişen fiyatlarının kesikli-zamana uyarlanması sonucu oluşan bir modeldir.

Matematiğin bir alt dalı olan stokastik süreçlerde Doléans-Dade üsteli, Doléans üsteli ya da stokastik üstel, matematiksel analizin üstel fonksiyonuna stokastik süreçlerde karşılık gelen bir kavramdır. Bu kavram adını Fransız asıllı Amerikalı matematikçi Catherine Doléans-Dade'den almaktadır.

Matematiğin bir alt dalı olan olasılık teorisinde Girsanov teoremi, stokastik süreçlerin ölçü değişimleri altında nasıl değiştiğini gösteren ve özellikle finansal matematikte yaygın uygulaması olan bir teoremdir. Teorem, finansal matematikte bir dayanak varlığın fiziksel ya da gözlemlenen bir ölçüde yazılan fiyat sürecinin riske duyarsız ölçüye nasıl dönüştürüleceğini gösterir. Teorem, stokastik diferansiyel denklemlerin zayıf çözümlerinin varlığını ve biricikliğini kanıtlamakta da yararlıdır.