İçeriğe atla

Fiber lazer

Fiber lazer, içerisinde doğada nadir bulunan iterbiyum, neodimyum, disprozyum, praseodim ve tulyum gibi elementler barındıran lazer türüdür. Bu elementler devamlı olmayarak ışık yükseltmeyi sağlayan katkılı fiber yükselticilerle alakalıdırlar. Raman saçması veya dört dalga karışımı da bu şekilde fiber lazere güç sağlamaktadırlar.

Kolaylıklar ve Uygulamalar

Fiber lazerin avantajları şunlardır :

  • Işık, esnek bir fiberin üzerinde katlanır: Işık her zaman fiberin üzerindedir ve fiber, ışığın kolaylıkla odaktaki elemente taşınmasını sağlar. Bu özellik metalleri veya polimerleri kesmede, katlamada ve kaynatmada önemli bir role sahiptir.
  • Yüksek üretim gücü: Fiber lazerler kilometreler boyunca aktif olma yeteneğine sahiptirler ve bu da optiksel açıdan büyük ölçüde güç sağlar.

Ayrıca bu lazerler fiberin yüzey alanının hacmine oranından kilowatt düzeyinde devamlı çıkış gücü sağlarlar bu da etkili bir soğutmayı meydana getirir.

  • Yüksek optik kalitesi: Fiberin dalga kılavuzu ışığın yolundaki termal bozulmayı yüksek enerjili optin ışını oluşturarak azaltır veya tamamen uzaklaştırır.
  • Kompakt boyutları: Fiber lazerler, katıhal lazerleriyle veya gaz lazerleriyle kıyaslanır çünkü fiber lazerler katlanıp bükülme özelliğiyle daha fazla yer kaplama özelliğine sahiptir.
  • Güvenilirlik: Fiber lazerler yüksek titreşim kararlılığı gösterirler, uzatılmış ömürleri vardır ve bakım gerektirmezler.
  • Zirve gücü ve nanosaniye titreşimleri etkili işlem özelliği katar.
  • İlave gücü ve daha iyi ışın kalitesi hızlı kesme özelliği ve daha şekilli kesme özelliği sağlar.
  • Düşük maliyetlidir.
  • Fiber lazerler yüksek enerjili yüzey akustik dalgası (SAW) cihazları yapımında kullanılıyor.
  • Fiber lazerler, eskiden kullanılan katı hal lazerlerine oranla daha düşük maliyet ve daha fazla verim sağlamaktadırlar.

Bunun yanı sıra fiber lazerler, içerisinde fiber yankılayıcı bulunduran makineler olarak da tanımlanabilirler. Fiber lazer uygulamalarının bir diğerleri ise malzeme işleme, iletişim, spektroskobi, sağlık ve enerjili silahlardır.

Tasarım ve Üretimi

Diğer lazer türlerinden hariç olarak, fiber lazerlerdeki lazer boşluğu fiber lazerlerin füzyon birleşmesinden monolitik olarak meydana gelmiştir ; fiber Bragg ızgaraları konveksiyonel dielektrik aynaları optiksel bilgi akışı sağlaması için değiştirmiştir. Tek boylamasına çalışan çok dar dağılmış geri bildirim lazerleri Bragg ızgaralarında güç kazancı sağlarlar.Fiber lazerler yarı iletken lazer diyotlardan ve diğer fiber lazerler tarafından pompalanırlar.Q-değişim atımlı fiber lazerler Nd:YAG teknolojisine kompakt, elektriksel etkili alternatif sağlar.

Çift Sarmallı Fiberler

Birçok yüksek enerjili fiber lazerler çift sarmallı yapıdadırlar. İki katmanla örtülü çekirdek, fiber kazanç sağlamaktadır. Sürekli modu çekirdek içinde güç üretirken çok modlu ışın pompası içini kaplayan tabakada enerji üretir.

                                                                                                 [[Dosya:RectaDFC.png|küçükresim|Çift=== Sarmallı Fiber:

Dışarı kaplaması ise bu pompaya ışığı hapseder. Bu düzenleme öncesine göre çekirdeği pompalanması yönünden yüksek enerjiye maruz bırakır, diğer türlü bu işlem içerisinde gerçekleşirdi ve ışık pompasını düşük parlaklıkla yüksek sinyalli parlaklığa dönüştürür. Sonuç olarak fiber lazerler ve yükselticiler ara sıra parlaklık dönüştürücüleri olarak da tanımlanırlar. Ayrıca çift sarmallı fiberler hakkında bir soru vardır ; dairesel simetrili fiber kötü bir dizayna sahiptir.[3][4][5][6][7][8] Bu dizayn birkaç modu destekleyen (yahut en fazla bir) çekirdeği yeterince küçük tutmak için yapılmalıdır. Bu, çekirdeği yeterince sınırlamak için ve optiksel pompa kesimi, fiberin küçük bir kısmının üzerindedir.

Güç Yükseltimi

Fiber lazer teknolojisindeki son yenilikler hızlı ve geniş yükselen bir sınırlı kırılımlı ışın güçlerini, diot pompolı katıhal lazerlerinden üretmeyi başardı. Yüksek enerji ve yüksek parlaklık diotlarında olduğu gibi geniş mod alanlı (LMA) fiberlerin başlangıcından dolayı devamlı dalga ve tek enine modlu güçler 100W ' dan 20 kW' a arttı. Profesyonel tek modlu hazerler 10 kW'a CW gücünde ulaştı. 2014'te birleşik ışınlı fiber lazerler 30 kW'a örnek gösterildi.

Mod Kilitleme

Ana konu : Mode-Locking[]

Pasif Mod Kilitleme

Doğrusal Olmayan Polarizasyon Rotasyonu

Doğrusal polarizeli ışık, çift kesişimli fibere zayıf bir şekilde bağlandığı zaman ışığın kutuplaşması fiberin içinde genellikle eliptik bir şekil alır. Işık kutuplaşmasının yönü ve eliptik şekli fiberin şeklinden ve çift kesişimli olmasından açıklanır. Fakat, eğer ışığın yoğunluğu yüksekse, doğrusal olmayan optiksel ve ışık kutuplaşmasında fazla şans açığa çıkaran Kerr etkisi fiberim içinde göz önüne alınmak zorundadır. Işık yoğunluğuna bağlı olan optiksel Kerr etkisi polarizasyonu değiştirdiğinde, eğer kutuplaştırıcı fiberin arkasındaysa,polarlaştırıcı boyunca olan ışık yoğunluğunu bağımsız hale getirir.Uygun olarak seçilmiş polarlaştırıcının yönelimi boyunca ve fiberin uzunluğunca, yapay doyurucu soğurucu etkisi ışığın yüksek yoğunluğuyla daha az soğurarak daha kısa bir sürece cevap vermektedir.

Yarıiletken Doyurulabilir Soğurma Gösteren Aynalar (SESAM)

Yarıiletken doyurulabilir soğurucular 1974'ten önce (p-type germenyum CO2 kilitleyici lazer olarak kullanılırken) mod kilitleyici lazer olarak kullanılırlardı. Modern SESAM III-V yarıiletken tek kuantum kuyusu (SQW) ya da çoklu kuantum kuyuları dağıtılmış Bragg yansıtıcılarının içinde büyümüştür. (DBRs)Bunlar ilk olarak Rezonans titreşim Mod kilitleyici şeması olarak (RPM) mekanizmanın başında KLM'yi hız doyurucu soğurucu olarak Ti:Safir lazerler için kullanılmıştır.RPM ise çift yarık diye bilinen mod kilitleme tekniğidir. Rezonan özelliğine sahip olmayan Kerr-type evresine yetki veren APM lazerlerinden farklı olarak, RPM büyük doğrusal olmayarak rezonans bandının yarıiletkenleri doldurduğu etkilerle çalışır.SESAM'lar çukur içinde bulunan doyurulabilir soğurucu cihazlardır çünkü kendinde bu cihazla birlikte sadelik bulunur. Bundan dolayı, SESAM'ların kullanımı titreşim zamanlarında, ortalama güçte, titreşim enerjisinde, çok hızlı katıhal lazerlerinin tekrarlama oranlarında birkaç büyüklüğe yükseltilmiştir.Ortalama güç olarak 60 W ve tekrarlama derecesi olarak da 160 GHz saptanmıştı. SESAM destekli KLM kullanarak, sub-6fs titreşimli, Ti:Safir 'den oluşan osilatör üretilmiştir. Diğer doyurulabilir soğurucu teknikli SESAM'ların en büyük avantajı ise soğurma parametreleri geniş bir türde olsa da kolaylıkla kontrol altına alınabilir. Örnek verecek olursak ; hafifletme derinliği ve kurtulma zamanı soğurucu katmanlar için düşük sıcaklık koşulları tarafından ve doyurma akıcılığı baş reflektörün çeşitlerinden dolayı kontrol altına alınabilir. Bu dizaynın özgürlüğü SESAM'ların fiber lazerlerin mod kilitleme içinde ömrünü artırmaktadır. Fiber lazerler yaklaşık ~ 1 µm ve 1.5 µm de başarılı olarak çalışırlar.

Karbon Nanotüpü Doymalı Soğurucular

Grafen Doymalı Soğurucular

Grafen tek atom kalınlığı düzeyinde sp2 düzeyinde yoğun miktarda petek şeklinde kristal kafeste paketlenmiştir. Grafen tarafından optiksel soğurma, ışık giriş yoğunluğu eşik değerinin üstünde olduğu zamanlarda doyma miktarında olabilir.Bu doğrusal olmayan ışık davranışı, doymalı soğurma ve eşik değeri, doyma akıcılığı olarak tanımlanır. Grafen, görünür bölge ışığında, kolaylıkla güçlü çıkış ortamında ; sıfır bant boşluğu ve evrensel optiksel soğurma seviyesinde soğurulabilir. Bu, fiber lazerlerin mod kilitlemesiyle bant genişliği tonlanabilirliğinin grafen tarafından doyurulabilir soğurucu olarak kullanıldığı yerlerle alakalıdır. Özel durumundan dolayı, grafen ultrahızlı foton biliminde geniş uygulama alanına sahiptir.[19][20][21] Buna ek olarak, SWCNT'lerle kıyaslarsak, grafenin iki boyutlu yapıya sahip olmasından, doyurulmama kaybı daha az ve eşik değeri daha fazladır. Kendi kendine başlayan mod kilitleyici ve yüksek enerjiyle birlikte sabit titreşim emisyonu, grafen doymalı soğuruculu erbium katkılı içinde gerçekleştirilebilir. .[22][23][24] Atomik grafen katmanı, dalga hassassızlığı ve full-band olarak kullanılan ultra hızlı doyma hassassızlığına sahiptir.Erbium katkılı dağıtıcı solitan fiber lazer, birkaç katmanda mod kilitleyicidir, deneysel olarak da dağıtıcı solitonların sabit dalga boyu tonunda 30 nm (1570-1600 nm) olarak saptandığı kanıtlanmıştır.

Aktif Mod Kilitleme

Aktif mod kilitleme normal olarak lazer boşluğunun kaybından (veya kazancından), boşluk frekansına eşit olan derecede düzenlenmesiyle ya da harmonik nedenle düzenlenmesiyle gerçekleştirilir. Pratikte, modülatör,sesli-ışıksal veya elektro-ışıksal, Mach-Zehnder bütünleştirmeli optik modülatörler ya da yarı iletken elektro-soğuruculudur. (EAM) Aktif mod kilitlemenin prensibi sinüs biçimli düzenleyiciyle birliktedir.Bu durumda, optiksel titreşimler, modülatörden oluşabilecek kaybı en aza getirirler.Titreşimin zirve noktası otomatik olarak, modülatörden oluşabilecek eş zamanlı kaybı düzenlemektedir. Sinüs biçimli düzenlemenin yavaş olmasından dolayı, ultra kısa darbeleri (< 1ps) üretmek bu metodu kullanarak pek kolay değildir.Sabit operasyonlarda titreşim uzunluğu kesinlikle modülatör sinyaliyle ya da onun birkaç katıyla eşleşmelidir. Bunu çözmek için en güçlü çözüm yöntemi canlandırılabilir mod kilitlemedir. Örnek olarak, dış sinyalin mod kilitlemiş parçalarından biri belirlenirse ; tur frekansı dedektör tarafından filtrelenerek lazer boşlığunda kaybı düzenleyen yükselticiye gönderilir. Bu prosedür, eğer boşluk uzunluğu akustik titremelerden veya termal patlamadan dolayı dalgalanma sağlıyorsa senkronize olmaya zorlar. Bu metodu kullanarak, yüksek stabil mod kilitleyiciler gerçekleştirilmiştir. Aktif mod kilitlemenin en büyük avantajı harici radyo frekans kaynağına(RF) mod kilitleyici lazeri senkronize etmesidir. Senkronizasyonun normal olarak optiksel sinyalle elektronik kontrol sinyali arasında gerekli olduğu yerlerde bu çok kullanışlıdır. Ayrıca, aktif mod kilitleyen fiber, pasif mod kilitleyenden daha çok tekrarlama oranı sağlayabilir.Şu anda, fiber lazerler ve yarı iletken diyot lazerler mod kilitlemenin kullanıldığı alanlardan en önemli iki lazer türüdür.

Koyu Soliton Fiber Lazerler

Mod kilitlemeyen özellikte, koyu soliton fiber lazer tüm normal erbiyum katkılı dağılan fiber lazerler içinde başarıyla gerçekleştirilen ilk türdür.Deneysel olarak parlak titreşim emisyonundan hariç olarak bulunan, uygun koşullar altında, fiber lazer tekli veya çoklu koyu titreşimleri atar.Sayısal verilere dayanarak, kotu titreşim biçimini lazerdeki koyu soliton şeklinin sonucu olarak açıklayabiliriz.

Çoklu Dalgaboylu Fiber Lazerler

Son zamanlarda, çok dalgaboylu dağıtıcı solitonlar tüm normal fiber lazer dağıtımlarında SESAM'la birlikte pasif olarak mod kilitlemişlerdir. Boşluk çift kırılmasına dayanarak, sabit tek-, çift- ve üçlü dalgaboyu dağıtıcı soliton lazerde oluşturulduğu bulunmuştur.Jenerasyon mekanizması, dağıtıcı solitonun doğasını takip etmektedir.

Fiber Disk Lazerler

Fiber lazer diskler

Bir diğer fiber lazer türü ise fiber disk lazerlerdir. Bu lazerlerde, pompa fiberin kaplayan kısmının içinde birleşmemiştir fakat pompa yerine, ışık çekirdeğe dağıtılmıştır çünkü çekirdek ip gibi kendi üstüne sarılmıştır.Bu düzenleme güç artırma için pompaların çok olduğu yerde bobinin dış sınır çevresinde kullanılır.[27][28][29][30]Fiber disk lazerler geleneksel lazerlerle kıyaslanacak olursa geri yansıtmalara karşı istisnai bir korumaya sahiptir. Fiber disk lazerler kaynak için ve kesme işlemi için 1000 watt güç gerektiren yerlerde kullanılabilirler.

Ayrıca bakınız

Figür-8 Lazer 24 Kasım 2016 tarihinde Wayback Machine sitesinde arşivlendi.

Kaynakça

[1]

[2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28]

  1. ^ A. Liu; K. Ueda (1996). "The absorption characteristics of circular, offset, and rectangular double-clad fibers". Optics Communications 132 (5–6): 511–518.
  2. ^ Popov, S. (2009). "7: Fiber laser overview and medical applications". In Duarte, F. J. Tunable Laser Applications (2nd ed.). New York: CRC.
  3. ^ S. Bedo; W. Luthy; H. P. Weber (1993). "The effective absorption coefficient in double-clad fibers". Optics Communications 99 (5–6): 331–335.
  4. ^ Patel, A.; Lincoln, B.; Stone, D. (April 1, 2013). "Specialty Fiber: Fiber lasers lower cost of making SAW's". Laser Focus World 49 (4): 59. Retrieved June 18, 2013.
  5. ^ Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption in double-clad fiber amplifiers. 2: Broken circular symmetry". JOSAB 39 (6): 1259–1263.
  6. ^ Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption in double-clad fiber amplifiers.3:Calculation of modes". JOSAB 19 (6): 1304–1309. Bibcode:2002JOSAB..19.1304K. doi:10.1364/JOSAB.19.001304.
  7. ^ Leproux, P.; S. Fevrier; V. Doya; P. Roy; D. Pagnoux (2003). "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of pump". Optical Fiber Technology 7 (4): 324–339. Bibcode:2001OptFT...7..324L. doi:10.1006/ofte.2001.0361.
  8. ^ D.Kouznetsov; J.Moloney (2004). "Boundary behaviour of modes of a Dirichlet Laplacian". Journal of Modern Optics 51 (13): 1362–3044. Bibcode:2004JMOp...51.1955K. doi:10.1080/09500340408232504.
  9. ^ "IPG Photonics offers world's first 10 kW single-mode production laser". June 17, 2009. Retrieved March 4, 2012.
  10. ^ "Many lasers become one in Lockheed Martin's 30 kW fiber laser". Gizmag.com. Retrieved 2014-02-04.
  11. ^ H. Zhang et al, “Induced solitons formed by cross polarization coupling in a birefringent cavity fiber laser”, Opt. Lett., 33, 2317–2319.(2008).
  12. ^ D.Y. Tang et al, “Observation of high-order polarization-locked vector solitons in a fiber laser”, Physical Review Letters, 101, 153904 (2008).
  13. ^ "BATOP GmbH - Welcome". Batop.com. 2013-05-25. Retrieved 2014-02-04.
  14. ^ H. Zhang et al, “Coherent energy exchange between components of a vector soliton in fiber lasers”, Optics Express, 16,12618–12623 (2008).
  15. ^ H. Zhang et al, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser”, Optics Express, Vol. 17, Issue 2, pp.12692-12697
  16. ^ L.M. Zhao et al, “Polarization rotation locking of vector solitons in a fiber ring laser”, Optics Express, 16,10053–10058 (2008).
  17. ^ Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko and A. C. Ferrari, ACS Nano,"Graphene Mode-Locked Ultrafast Laser" doi:10.1021/nn901703e
  18. ^ Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi and A. Ferrari, Nano Research,"A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser" doi:10.1007/s12274-010-0026-4
  19. ^ Qiaoliang Bao, Han Zhang, Yu Wang, Zhenhua Ni, Yongli Yan, Ze Xiang Shen, Kian Ping Loh,and Ding Yuan Tang, Advanced Functional Materials,"Atomic layer graphene as saturable absorber for ultrafast pulsed lasers"
  20. ^ H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh. "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene" (PDF). Optics Express 17: P17630. arXiv:0909.5536. Bibcode:2009OExpr..1717630Z. doi:10.1364/OE.17.017630.
  21. ^ F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, Nature Photonics,"Graphene photonics and optoelectronics" doi:10.1038/nphoton.2010.186
  22. ^ Han Zhang,Qiaoliang Bao,Dingyuan Tang,Luming Zhao,and Kianping Loh. "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker" (PDF). Applied Physics Letters 95: P141103. arXiv:0909.5540. Bibcode:2009ApPhL..95n1103Z. doi:10.1063/1.3244206.
  23. ^ "Nanotechnology Spotlight Articles – Category, page 1". Nanowerk. Retrieved 2014-02-04.
  24. ^ Zhang, H. et al., (2010). "Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser" (PDF). Applied Physics Letters 96 (11): 111112. arXiv:1003.0154. Bibcode:2010ApPhL..96k1112Z. doi:10.1063/1.3367743.
  25. ^ Han Zhang, Dingyuan Tang, Luming Zhao and Wu Xuan,“Dark pulse emission of a fiber laser" PHYSICAL REVIEW A 80, 045803 2009
  26. ^ K. Ueda (1999). "Scaling physics of disk-type fiber lasers for kW output" (PDF). Lasers and Electro-Optics Society 2: 788–789. doi:10.1109/leos.1999.811970.
  27. ^ Ueda; Sekiguchi H.; Matsuoka Y.; Miyajima H.; H.Kan (1999). "Conceptual design of kW-class fiber-embedded disk and tube lasers". Lasers and Electro-Optics Society 1999 12th Annual Meeting. LEOS '99. IEEE 2: 217–218. doi:10.1109/CLEOPR.1999.811381. ISBN 0-7803-5661-6.
  28. ^ Hamamatsu Photonics K.K. Laser group (2006). "The Fiber Disk Laser explained". Nature Photonics. sample: 14–15. doi:10.1038/nphoton.2006.6.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Lazer</span> ışığın uyarılmış radyasyon ile yükseltilmesini sağlayan bir optik düzenek

Lazer ışığın uyarılmış radyasyon ile yükseltilmesini sağlayan bir optik düzenektir. İsmini "Light Amplification by Stimulated Emission of Radiation" kelimelerinin baş harflerinden alır ve bu, "ışığın uyarılmış ışıma ile yükseltilmesi" anlamına gelir. İlk lazer, 1960 yılında Theodore Maiman tarafından Charles Townes ve Arthur L. Schawlow'un teorileri baz alınarak üretilmiştir. Lazerin ışıktan daha düşük mikrodalgafrekanslarında çalışan versiyonu olan "maser" ise Townes tarafından 1953 yılında bulunmuştur.

Neodimyum, sembolü Nd ve atom numarası 60 olan kimyasal bir elementtir. Lantanit serisinin dördüncü üyesidir ve nadir toprak metallerinden biri olarak kabul edilir. Havada ve nemde hızla kararan sert, hafif dövülebilir, gümüşi bir metaldir. Hızla oksitlenir ve +2, +3 ve +4 pembe, mor/mavi ve sarı bileşikler üretir. Elementlerin en karmaşık spektrumlarından birine sahip olduğu kabul edilir. Neodimyum, 1885 yılında praseodimyumu da keşfeden Avusturyalı kimyager Carl Auer von Welsbach tarafından keşfedildi. Monazit ve bastnäsite minerallerinde önemli miktarlarda bulunur. Neodimyum, doğal olarak metalik formda veya diğer lantanitlerle karışmamış olarak bulunmaz ve genel kullanım için rafine edilir. Neodimyum kobalt, nikel veya bakır kadar yaygındır ve Dünya'nın kabuğunda yaygın olarak dağılmıştır. Diğer birçok nadir toprak metalinde olduğu gibi, dünyadaki ticari neodimyumun çoğu Çin'de çıkarılmaktadır.

<span class="mw-page-title-main">Grafen</span> karbon atomunun bal peteği örgülü yapılarından bir tanesi

Grafen, karbon atomunun bal peteği örgülü yapılarından bir tanesine verilen isimdir.

<span class="mw-page-title-main">Optik lif</span>

Optik lif(optical fiber) veya bilinen diğer adıyla ışıklifi(fiberoptic), yüksek kaliteli püskürtülmüş cam veya plastikten yapılmış olan esnek ve şeffaf bir lifdir. Kabaca insan saçından daha kalındır. Işığı lifin iki ucuna iletmek için bir ışık kılavuzluğu veya ışık borusu görevini görür. Işıkliflerin dizayn ve uygulaması ile ilgilenen uygulamalı bilim ve mühendislik dalı “fiber optik” olarak bilinir. Optik lifler, iletişimin diğer formlarına göre iletimin daha uzun mesafelerde ve daha geniş bant genişliği ile olmasına imkân veren “ışıklifi iletişim” alanında yaygın olarak kullanılır. Liflerin metal kablolar yerine kullanılmasının nedeni sinyallerin lifler üzerinde daha az kayıpla ilerlemesi ve aynı zamanda elektromanyetik engellerden etkilenmemesidir. Lifler aynı zamanda ışıklandırma için de kullanılır ve yığınlar halinde sarılır. Bu şekilde sınırlı alanlarda görüntülemeye imkân verecek şekilde görüntü taşımak için kullanılabilirler. Işıklifleri özel tasarlanmış lifli sensörler ve lifli lazerler dâhil, birçok değişik uygulama içinde de kullanılırlar.

<span class="mw-page-title-main">Fiber optik iletişim</span>

Fiber optik iletişim ya da bilinen adıyla ışıklifi, optik lif boyunca ışık sinyalleri göndererek bilginin bir yerden başka bir yere iletilmesi metodudur. Işık, bilgi taşımak için yönlendirilmiş elektromanyetik taşıyıcı dalga görevi görür. İlk olarak 1970 yılında geliştirilen ışıklifli iletişim sistemleri; telekomünikasyon endüstrisinde devrim yaratmış, bilgi çağının gelişinde önemli bir rol oynamıştır. Elektriksel iletimden avantajlı olması nedeniyle ışıklifleri gelişmiş ülkelerdeki çekirdek ağlarda bakır tellerin iletişimdeki yerini aldı.

<span class="mw-page-title-main">Lazer soğutma</span>

Lazer soğutma; atomik ve moleküler örneklerin bir veya daha fazla lazer alan ile etkileşimi ile mutlak sıfıra yakın derecede soğutulduğu birçok tekniği ifade etmektedir.

Bu Lazer konularının bir listesidir.

<span class="mw-page-title-main">Fabry-Pérot interferometresi</span>

Optikte Fabry-Pérot interferometresi veya etalon, iki paralel yansıtıcı yüzeyden oluşan bir optik kovuktur. İnterferometre ismini cihazı 1899'ta geliştiren fizikçiler Charles Fabry ve Alfred Perot'tan almıştır. Cihazın diğer ismi olan etalon, Fransızca ölçme standartı anlamına gelen étalon kelimesinden gelmektedir.

Pound-Drever-Hall tekniği, optik kovuk'a veya buhar hücresine kilitleme yapılarak lazer frekansı sabitleme yöntemlerinden biridir. İnterferometresel gravitasyonel dalga ölçerlerin temel teknolojisini oluşturur. Bunun yanında atom fiziği ve zaman ölçüm standartlarında oldukça sık rastlanır. Pound-Drever-Hall tekniğinin (PDH) kavramsal temelleri frekans modülasyonu ile yakından alakalıdır. Birini anladığınız zaman diğerini halletmek kolay olur. PDH tekniğinin basit arka planı prensipte şudur: Lazer frekansı Fabry-Perot interferometresi yardımıyla ölçülür ardından bu ölçüm lazeri besleyerek frekans dalgalanmasını bastırır.

Uyarlanabilir optik, optik sistemlerinin performansını artırmak için geliştirilmiş ve dalga cephesi bozulmalarını en aza indirmek amacıyla kurulmuş bir teknolojidir.

<span class="mw-page-title-main">Işık yükseltici</span>

Işık yükseltici, ışık sinyallerini doğrudan yükselten, ilk önce elektrik sinyaline dönüştürmeye ihtiyaç duymayan bir alettir. Işık yükseltici lazer olarak da düşünülebilir fakat ışık boşluğu olmadan bu genelleme yapılmalıdır. Işık yükselticileri optik iletişiminde ve lazer fiziğinde önemli bir yere sahiptirler.

Fizikte iki dalga kaynağı eğer sabit bir faz farkları varsa ve eşit frekansa sahip ise mükemmel bir uyuma sahiptir. Bu dalgaların sabit girişime olanak veren ideal bir özelliğidir. Asla oluşmayacak durumları sınırlayan ve dalga fiziğinin anlaşılmasına yardımcı olan farklı kavramları içerir ve kuantum fiziğinde çok önemli bir konsept olmuştur. Daha genel olarak, uyumluluk tek bir dalganın veya birçok dalga içeren dalga paketlerinin fiziksel özelliklerini tanımlar.

<span class="mw-page-title-main">Optik saydamlık ve yarı saydamlık</span>

Fiziğin optik alanında, geçirgenlik ışığın bir materyal üzerinden dağılmadan geçebilmesine olanak sağlayan fiziksel bir özelliktir. Makroskopik (büyük) ölçeklerde, fotonların Snell kanununa göre hareket ettikleri söylenebilir. Yarı saydamlık, geçirgenliğin içinde bulunan bir üst kümedir ve ışığın geçmesine izin verir ancak Snell kanununu takip etmek zorunda değildir. Fotonlar, kırınım işaretleri içinde herhangi bir değişim meydana geldiğinde her iki arayüzde de dağınım gösterebilirler. Diğer bir deyişle, yarı saydam bir ortam ışığın ulaşım yapmasına olanak sağlarken saydam olan bir ortam sadece ışığın geçişini onaylamakla kalmaz aynı zamanda görüntü oluşumuna da izin verir. Yarı saydamlığın karşıtı olan kavram opaklıktır. Saydam yani geçirgen olan maddeler oldukça net görülen, tamamının tek bir renge sahip olduğu ya da her rengi içeren bir spekturumu meydana getiren herhangi bir kombinasyona sahip olabilir.

<span class="mw-page-title-main">Süpersüreklilik</span>

Optikte süpersüreklilik, doğrusal olmayan işlemlerin bir pompa ışını üzerinde birlikte hareket etmesiyle orijinal pompa ışınının ciddi bir spektral genişlemesi sonucu oluşur. Örneğin; mikro yapılı fiber optik kullanılarak akıcı bir süpersüreklilik sağlanır. Ne kadar bir genişlemenin bir süpersüreklilik sağlayabileceği hakkında kesin bir açıklama bulunmamaktadır. Ancak araştırmacılar 60 nanometrelik bir genişlemeye ne kadar yaklaşırlarsa süpersürekliliğin gerçekleşmesinin ihtimalinin o kadar çok olacağını iddia ettiler.

<span class="mw-page-title-main">Nanofotonik</span>

Nanofotonik ya da nano-optik, ışığın nanometre boylarındaki özelliklerini ve bu boyutlardaki maddelerle etkileşimini inceleyen fotonik ile nanoteknolojinin bir alt dalıdır. Optik, malzeme bilimi ile elektrik mühendisliği ile yakın bir ilişki içinde olan nanofotoniğin uygulamaları arasında dalga boyundan küçük nano-anten sensörleri, nanometre boyutlu dalga kılavuzları, yeni nesil fotolitografi teknikleri, yüksek çözünürlüklü mikroskoplar ve metamalzemeler bulunmaktadır.

<span class="mw-page-title-main">Lazer ışını kaynağı</span>

Lazer ışını kaynağı (LIK), bir lazer kullanılarak metal veya termoplastik parçaları birleştirmek için kullanılan bir kaynak tekniğidir. Kiriş, dar, derin kaynaklara ve yüksek kaynak oranlarına izin veren konsantre bir ısı kaynağı sağlamaktadır. Süreç, otomotiv endüstrisinde olduğu gibi otomasyon kullanan yüksek hacimli uygulamalarda sıklıkla kullanılmaktadır. Anahtar deliği veya penetrasyon modu kaynağına dayanmaktadır.

<span class="mw-page-title-main">Lazer diyot</span> yarı iletken bir cihaz

Lazer diyot, doğrudan elektrik akımıyla pompalanan bir diyotun diyotun bağlantı noktasında kalıcı koşullar yaratabildiği LED'e benzer bir yarı iletken cihazdır.

<span class="mw-page-title-main">Lazer kılavuz yıldızı</span>

Lazer kılavuz yıldızı, ışığın atmosferik bozulmasını düzeltmek için büyük teleskoplarda kullanılan ve astronomik adaptif optik sistemlerinde kullanılmak üzere oluşturulan yapay bir yıldız görüntüsüdür. Adaptif optik (AO) sistemleri, kılavuz yıldız adı verilen bir dalgalanma cephesi (wavefront) referans ışık kaynağını gerektirir. Doğal yıldızlar bu amaç için nokta kaynak olarak kullanılabilir, ancak yeterince parlak yıldızlar gökyüzünün her yerinde mevcut değildir, bu da doğal kılavuz yıldız uyarlamalı optiklerin kullanışlılığını büyük ölçüde sınırlar. Bunun yerine, atmosfere bir lazer tutularak yapay bir kılavuz yıldız oluşturulabilir. Işından gelen ışık, üst atmosferdeki bileşenler tarafından teleskopa geri yansıtılır. Bu yıldız, teleskobun işaret etmek istediği herhangi bir yere konumlandırılabilir ve gökyüzünün çok daha büyük bir kısmını uyarlanabilir optiklere açar.

Ortwin Hess, Trinity College Dublin (İrlanda) ve Imperial College London'da yoğun madde optiği alanında çalışan Almanya doğumlu bir teorik fizikçidir. Yoğun madde teorisi ve kuantum optiği arasında köprü kurarak, kuantum nanofotonik, plazmonik, metamalzemeler ve yarı iletken lazer dinamiğinde uzmanlaşmıştır. 1980'lerin sonlarından bu yana, 300'den fazla hakemli makalenin yazarı ve ortak yazarıdır; bunlardan en bilinen, "Trapped rainbow' storage of light in metamaterials" adlı makalesine 400'den fazla kez atıfta bulunulmuştur. Kuantum kazanımlı aktif nanoplazmoniklere ve metamalzemelere öncülük etti. 2014 yılında, güçlendirilmiş yüzey plazmon polaritonlarının boşluksuz (nano-) lazerleme ve lokalizasyonu için yeni bir yol olarak "durdurulmuş ışıkla lazerleme" ilkesini tanıttı. Bu ilke, ona 33 h-endeksi kazandırdı.

<span class="mw-page-title-main">J. Roy Taylor</span>

(James) Roy Taylor, Imperial College London'da Ultra hızlı Fizik ve Teknoloji Profesörüdür.