İçeriğe atla

Feynman diyagramı

Bu Feynman diyagramında, bir elektron ve bir pozitron yokoluşu, bir foton'un üretilmesi (mavi sine dalgası tarafından gösterilebilir) alıyor bir kuark-antikuark çifti, sonrasında antiquark ışıması bir gluon (yeşil helis ile gösterilebilir).

Teorik fizikte Feynman diagramları, bir Feynman diyagramının davranışını düzenleyen matematiksel ifadelerin resimsel sunumlar katılarak diyagram tarafından açıklandığı gibi atomaltı parçacıklarların davranışları gösterilmiştir. Bu şemalar bunları bulan adınadır, Amerikan fizikçisi Richard Feynman Nobel Ödülü kazandı ve 1948 yılında tanıttı. Atomaltı parçacıkların ilişkileri sezgisel anlamak karışık ve zor olabilir ve Feynman diagramları oldukça gizemli soyut formülün basit bir gösterimine izin verir. David Kaiser yazdı ki, "yüzyılın ortasından bu yana, bu diagramlar teorik fizikçiler için giderek zorlaşan kritik hesaplamalar uygulamasına yardım araçlarıdır," ve "Feynman diagramları Teorik fizikte her yönüyle neredeyse devrimdir.".[1] kuantum alan teorisi diyagramların ilk uygulamasıdır, ayrıca, katı-hal teorisi gibi diğer alanlardada kullanılabilir.

Feynman Zamanda bir elektronun hareketi geriye doğru imiş gibi bir pozitron yorumu önerdi.[2] ve böylece antiparçacıklar Feynman diyagramları ile hem uzay eksenli ve hem de bir zaman eksenli ama zaman içinde geriye doğru uzayda ileriye doğru hareket eden parçacıklar olarak yorumlanır. Teorik parçacıklar fiziği için olasılık genliği hesaplamaları gereklidir ve çok sayıda değişken üzerinde büyük kesirler ve karışık integraller kullanılabilir. Bununla birlikte düzgün bir yapıda bu integraller belki de grafik gösterimle Feynman diyagramları ile olabilir. Bir Feynman diagramı bir parçacık yolunun bir parçacık sınıfının bir katkısıdır, bu katkı ve şemada tanımlanarak bölünmüş. Daha kesin bir ifadeyle ve teknik olarak, Bir Feynman diyagramı geçiş genliği bir pertürbatif katkının bir grafik temsilidir veya bir kuantum mekaniksel veya istatistiksel alan teorisinin korelasyon fonksiyonudur. Bununla birlikte kuantum alan teorisinin kanonik formülasyonunda, bir Feynman diyagramında perturbative içindeki terimler S-matrixi ile Wick's açılımını temsil eder .Alternatif olarak,yol integrali formulasyonu kuantum alan teorisinin geçiş genliği sistem sınırından son duruma kadar parçacıklar veya alanlar içindeki terimler bütün olası geçmişlerin bir ağırlık toplamının gösterimidir.burada geçiş genliği sınırlar arası bir S-matrix matris elemanı ile verilir ve bu kuantum sistemin son durumudur.

Kanonik nicemleme formülasyonu

Olasılık genliği başlangıç durumu bir kuantum sisteminin bir geçişi için son durumuna matris elemanı

tarafından verilir.

burada S-matris'tir. kanonik kuantum alan teorisinde etkileşim resmi Lagrangian etkileşimin kuvveti bir pertürbasyon serisi tarafından S-matris ile gösterilir.

burada Lagrangian etkileşimdir ve operatörler zaman sıralı ürün anlamına gelir.

burada operatörler normal ürün anlamına gelir ve olası işaret değişikliği fermiyonik operatörlerin gidip gelmesi için bir büzülme(biryayıcı) bir araya getirmekle ilgilenir

Feynman kuralları

Diyagramlar etkileşimi Lagrange bağlıdır ve Feynman kurallarına göre çizilir. Lagrangian etkileşimi için QED, ,Bir fermiyonik alanının etkileşimini tarif etmektedir. Bir bozonik gauge alanı ile , Feynman kuralları aşağıdaki koordinat uzayında formüle edilebilir:

  1. Her entegrasyonu koordine bir nokta tarafından gösteriliyor (bazen tepe denir);
  2. bozonik bir yayıcı iki noktayı birleştiren bir salınan çizgi ile temsil edilir;
  3. fermiyonik bir propagator iki noktayı birleştiren bir düz çizgi ile temsil edilir;
  4. bozonik bir alan noktasına bağlanmış bir salınan çizgiyle temsil edilir ;
  5. fermiyonik bir alan noktaya bağlı düz bir çizgi ile temsil noktasına doğru bir ok ile;
  6. fermionik bir alan noktaya bağlı düz bir çizgi  ;

Örnek: QED ikinci derece süreçler

S-matris içinde ikinci dereceden pertürbasyon terimidir

Fermiyonların saçılması

Integrandı verilen Wick's açılımı (diğerleri boyunca) aşağıdaki terimler

burada

Feynman gauge içindeki elektromanyetik büzüşmedir (yayıcı). Bu terimler sağda Feynman diyagramı tarafından gösteriliyor büzülme diyagramı verilmiştir. sağdaki:

  1. saçılma (sağdski sınır durum, son durum diyagramın solu);
  2. saçılma (soldakisınır durum, son durum diyagramın sağı);
  3. saçılma (alttaki sınır durum/üst, son durum diyagramda üst/alt ).

Compton saçılması ve and imhaçiftini üretme

açılımdaki diğer önemli bir terim

burada

fermiyonik büzülmedir (propagator).

Elektron-pozitron imha örnekleri

Elektron-Pozitron imhasında Feynman Diagramı

The elektron-pozitron imha etkileşimi:

ikinci dereceden Feynman diyagramı amacıyla bitişik gösterilmiştir:

In the sınır durum(altındaki; yakın zaman) burada bir elektrondur(e) ve bir positron (e+) ve final durumu(üstteki;geç zaman) burada iki foton(γ)dur.

Ayrıca bakınız

  • Schwinger#Schwinger ve Feynman
  • Stueckelberg-Feynman yorumlamaları
  • Değişmezlik Mekaniği
  • Penguin diyagramı
  • Yol integrali formülasyonu
  • Yayıcılar
  • JHepWork–Jython / Python kullanarak Feynman diyagramları çizimi için bir Java programı
  • Feynman diyagramları listesi
  • Açısal momentum diyagramları (kuantum mekaniği)

Notlar

  1. ^ ""Physics and Feynman's Diagrams" by David Kaiser, American Scientist, Volume 93, p. 156" (PDF). 31 Ekim 2017 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 6 Ekim 2013. 
  2. ^ Feynman, Richard (1949). "The Theory of Positrons". Physical Review. 76 (76). s. 749. Bibcode:1949PhRv...76..749F. doi:10.1103/PhysRev.76.749. 

Kaynakça

  • Gerardus 't Hooft, Martinus Veltman, Diagrammar, CERN Yellow Report 1973, online19 Mart 2005 tarihinde Wayback Machine sitesinde arşivlendi.
  • David Kaiser, Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics, Chicago: University of Chicago Press, 2005. ISBN 0-226-42266-6
  • Martinus Veltman, Diagrammatica: The Path to Feynman Diagrams, Cambridge Lecture Notes in Physics, ISBN 0-521-45692-4 (expanded, updated version of above)
  • Mark Srednicki, Quantum Field Theory, online25 Temmuz 2011 tarihinde Wayback Machine sitesinde arşivlendi. Script (2006)

Dış bağlantılar

İlgili Araştırma Makaleleri

Adını İngiliz fizikçi Paul Dirac'tan alan spinli ve göreli kuantum mekaniği denklemi,

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

D'Alembert işlemcisi, özel görelilikte, elektromanyetizmada ve dalga kuramında; Minkowski uzayını ve Einstein alan denklemlerinin diğer çözümlerini sağlayan Laplace işlemcisine d'Alembert işlemcisi veya dalga işlemcisi denir.

Lepton, temel parçacıklardan birisidir ve maddenin yapı taşıdır. En çok bilinen lepton, atomda bulunarak atomun kimyasal özelliklerini belirleyerek neredeyse tüm kimyayı oluşturan elektrondur. İki temel lepton sınıfı vardır: yüklü leptonlar ve nötr leptonlar. Yüklü leptonlar diğer parçacıklarla birleşerek atom ya da pozitronyum gibi bileşik parçacıklar meydana getirirken nötrinolar diğer parçacıklarla etkileşime girmezler ve bu sebepten algılanmaları çok zordur.

Fizikte ve matematikte, matematikçi Hermann Minkowski anısına adlandırılan Minkowski uzayı veya Minkowski uzayzamanı, Einstein'ın özel görelilik kuramının en uygun biçimde gösterimlendiği matematiksel yapıdır. Bu yapıda, bilinen üç uzay boyutu tek bir zaman boyutuyla birleştirilerek, uzay zamanını betimlemek için dört boyutlu bir çokkatlı oluşturulmuştur.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Pion</span>

Parçacık fiziğinde pion π0, π+ ve π'den oluşan üç atom atomaltı parçacığın ortak adıdır. Pionlar en hafif mezonlardır ve güçlü nükleer kuvvetin düşük enerjili durumlarını açıklamakta önemli bir rolü vardır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

<span class="mw-page-title-main">Kuantum renk dinamiği</span>

Kuantum renk dinamiği veya kuantum kromodinamiği, teorik fizikte kuantum kromodinamiği, kuarklar ve gluonlar arasındaki güçlü etkileşimin proton, nötron ve pion gibi kompozit hadronları oluşturan, temel parçacıkların teorisidir.

Matematikte, a Neumann polinomali,Carl Neumann tarafından özel durum için sunulan, Bessel fonksiyonu terimleri içerisinde fonksiyonların 1/z açılımında kullanılan bir polinomdur.

<span class="mw-page-title-main">Ayar teorisi</span> Fizikte bir teori

Ayar teorisi veya ayar kuramı, kuramsal fizikte temel etileşmeleri açıklar. Türkçede bazen yerelleştirilmiş bakışım kuramı olarak da geçer.

Matematik'te, çok değişkenli Gama fonksiyonu, Γp(·), Gama fonksiyonu'nun genelleştirilmiş şeklidir. Çokdeğişkenli istatistik'te kullanılır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

<span class="mw-page-title-main">Elektrozayıf etkileşim</span>

Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.

Yüklü akım etkileşimi, atom altı parçacıkların zayıf kuvvet yoluyla etkileşime girme yollarından biridir.
W+
ve
W-
bozonları
buna aracılık eder.