İçeriğe atla

Fatou-Bieberbach bölgesi

Matematiğin bir dalı olan çok değişkenli karmaşık analizde, Fatou-Bieberbach bölgesi, e biholomorf gönderim ile denk olan ve 'in özalt kümesi olan bölgelere verilen addır. Diğer deyişle,

  • ise,
  • birebir, örten ve holomorf fonksiyonu varsa,
  • de yine holomorfsa,

o zaman bir Fatou-Biebarbach bölgesidir.

Bu bölgeler, Riemann dönüşüm teoremi sebebiyle karmaşık düzlemde (yani iken) bulunmaz. O yüzden, bu bölgelerin varlığı, çok değişkenli karmaşık analizi bir değişkenli karmaşık analizden ayıran özelliklerden biridir.

Fatou-Biebarbach bölgesi adını bu tip bölgeleri 1920lerde araştırmış olan Fransız matematikçi Pierre Fatou[1] ve Alman matematikçi Ludwig Bieberbach'dan[2] almaktadır. Bu tip bölgelerin araştırması uzun süre kenarda kalmıştır.1980li yıllarda Jean-Pierre Rosay ve Walter Rudin'in makalesi,[3] dikkatleri bu bölgelerin tekrardan araştırılmasına çekmiştir.

Fatou-Bieberbach örnekleri genelde bir noktasını sabitleyen bir özeşyapı dönüşümü ve bu dönüşümün bu noktasındaki çekim havzası aracılığıyla verilir. Burada çekim havzası şu şekilde tanımlanabilir: bir noktasını sabitleyen (yani ) bir özeşyapı dönüşümüyse, ve tam sayıları için tanımları altında

kümesine 'nin noktasındaki çekim havzası denir. Eğer böyle bir özdönüşümün türevinin noktasındaki her özdeğerinin modülüsü 1"den küçükse, o zaman noktasındaki çekim havzası bir Fatou-Bieberbach bölgesi olur.

Ayrıca bakınız

Kaynakça

  1. ^ Fatou, Pierre: "Sur les fonctions méromorphes de deux variables. Sur certains fonctions uniformes de deux variables." C.R. Paris 175 (1922)
  2. ^ Bieberbach, Ludwig: "Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlichte volumtreue Abbildung des auf einen Teil seiner selbst vermitteln". Preussische Akademie der Wissenschaften. Sitzungsberichte (1933)
  3. ^ Rosay, J.-P. and Rudin, W: "Holomorphic maps from to ". Trans. Amer. Math. Soc. 310 (1988) [1] 3 Eylül 2024 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Morera teoremi</span> Matematik terimi

Matematiğin bir dalı olan karmaşık analizde, Giacinto Morera'nın ardından adlandırılan Morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için kullanılan temel bir sonuçtur. İtalyan matematikçi Giacinto Morera'nın adını taşımaktadır.

<span class="mw-page-title-main">Runge teoremi</span>

Karmaşık analizde Runge yaklaşım teoremi olarak da bilinen Runge teoremi 1885 yılında Alman matematikçi Carl Runge tarafından kanıtlanmış bir sonuçtur.

Matematiğin bir kolu olan, birden fazla karmaşık değişkenli fonksiyonlar teorisinde bir çoklu disk ya da polidisk disklerin Kartezyen çarpımıdır.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

Matematikte, özellikle karmaşık analizde, Cauchy-Hadamard teoremi bir kuvvet serisinin yakınsaklık yarıçapını hesaplamakta kullanılan önemli bir sonuçtur. Teorem ismini, Fransız matematikçi Augustin Louis Cauchy ve Jacques Hadamard'dan almıştır. Teorem, ilk defa 1821 yılında Cauchy tarafından yayınlanmıştır. Ancak; Hadamard aynı sonucu tekrar bulana kadar o kadar yaygın olarak da bilinen bir sonuç olmamıştır. Hadamard'ın bu teoremi ilk keşfi 1888'de olmuştur ve hatta bulduğu bu sonucu 1892'de yazdığı tezinde de kullanmıştır.

Matematiğin bir alt dalı olan karmaşık analizde, holomorf bir f fonksiyonunun sıfırı veya kökü f(a) = 0 eşitliğini sayılan karmaşık a sayısına verilen bir addır. Başka bir deyişle, holomorf fonksiyonların sıfır değerini aldığı karmaşık sayılara o fonksiyonun sıfırları adı verilir.

Sözde dışbükey bölgeler, matematikte karmaşık analizin ve çok değişkenli karmaşık analizin merkezinde yer alan holomorf fonksiyonların doğal tanım kümeleridir.

<span class="mw-page-title-main">Julia kümesi</span>

Bir fonksiyonun Julia kümesi, o fonksiyonun dinamiğini incelemek için kullanılan kümedir. Karmaşık fonksiyonlar, karmaşık düzlemi kendi dinamiklerine göre iki ayrık kümeye bölerler. Bu kümeler, Julia ve Fatou kümeleridir. Fonksiyon, Julia kümesi üzerinde kaotik davranış sergilerken, Fatau kümesinde normal davranış sergiler.

Matematikte, Bochner-Martinelli formülü, Cauchy integral formülünün birden fazla kompleks değişkenli fonksiyonlara yönelik genellemelerinden birisidir. Enzo Martinelli ve Salomon Bochner tarafından bağımsız olarak kanıtlanmıştır.

Matematiğin bir dalı olan çok değişkenli karmaşık analizde Poincaré teoremi, için, deki birim polidisk ile birim yuvarın arasında biholomorf gönderim olamayacağını söyleyen önemli bir teoremdir.

Matematiğin bir alt dalı olan karmaşık analizde, holomorfluk bölgesi, üzerinde tanımlı olan holomorf fonksiyolardan en az bir tanesinin daha büyük bir bölgeye holomorf özelliğini koruyarak devam ettirelemediği bölgelere verilen addır. Karmaşık düzlemdeki açık kümelerin hepsi holomorfluk bölgesidir. Ancak, karmaşık düzlemde geçerli olan bu sonucun dengi bir sonuç yüksek boyutlu uzayda herhangi bir bölge için geçerli değildir. Bu yüzden, holomorfluk bölgelerin belirleyici özelliklerini bulmak yirminci yüzyılın ilk yarısında çok değişkenli karmaşık analizde en yoğun çalışılmış konulardan birisi olmuştur. Bu farklılığı ilk defa Fritz Hartogs göz önüne sermiştir ve sonuç en genel haliyle Hartogs devam (genişleme) teoremi olarak bilinmektedir.

Matematikte, karmaşık koordinat uzayı de ya da bu uzayın altkümeleri üzerinde tanımlı ve karmaşık değer alan fonksiyonların teorisine; yani, birden fazla karmaşık değişkenli fonksiyonların teorisine çok değişkenli karmaşık analiz denir.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde bir analitik çokyüzlü kompleks uzay Cn'de sonlu sayıda holomorf fonksiyonlar aracılığıyla üretilen bir bölgedir. Analitik çokyüzlüler, özel geometrileri ve belki de çoğunlukla çokyüzlüyü oluşturan fonksiyonların sahip olduğu analitik özellikleri nedeniyle ilgi çekicidir.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde, Hefer teoremi, bir holomorfluk bölgesinde tanımlı holomorf fonksiyonların iki noktadaki değer farkının bu holomorfluk bölgesinin kartezyen çarpımında tanımlı olan başka holomorf fonksiyonlar ile bu iki noktanın koordinatları çarpımlarının toplamı olarak yazılabileceğini ifade eden bir sonuçtur.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde Bergman-Weil formülü, çok değişkenli holomorf fonksiyonların integral temsillerinden biridir. Bergman-Weil formülü aynı zamanda Cauchy integral formülünü birde fazla karmaşık boyuta genelleştirir. Stefan Bergman ve André Weil tarafından literatüre sokulmuştur.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde Oka önsavı kompleks koordinat uzayının özalt kümesi olan bir holomorfluk bölgesinde fonksiyonunun çoklualtharmonik olması gerektiğini ifade eden bir sonuçtur. Burada, fonksiyonu 'nın sınırı olan 'ya uzaklık fonksiyonudur ve 'nın içindeki ve kapanışının dışındaki için iyi tanımlıdır. Bu sonuç sayesinde, holomorfluk bölgesinin sözde dışbükey olduğu gösterilmiş olur.

Matematiğin bir dalı olan çok değişkenli karmaşık analizde, Reinhardt bölgesi, içindeki noktaların üzerinden geçen 0 merkezli bütün çemberleri içeren özel bölgelerdir. Bu bölge, adını Alman matematikçi Karl Reinhardt'tan almaktadır.