İçeriğe atla

Fark işleci

Matematikte fark işleci bir ƒ(x) işlevini farklı bir ƒ(x + b) - ƒ(x + a) işlevine eşler.

İleri fark işleci

sonlu fark hesaplamalarında sıklıkla kullanılır ve türevin sürekli durumlar için üstlendiği görevi süreksiz işlevler için yerine getirir. Fark denklemleri genellikle diferansiyel denklemleri çözmede kullanılan yöntemlerden beslenmektedir. Bu benzerlik zaman ölçüsü kalkülüsünün ortaya çıkmasını sağlamıştır. Geri fark işleci ise

biçiminde tanımlanmaktadır. Polinomlarla kısıtlandığında ileri fark işleci bir delta işleci görevi görmektedir.

n. fark

f(x) işlevinin n. ileri farkı

biçiminde ifade edilmektedir. Burada binom katsayısını göstermektedir. Bir diziye uygulanan ileri farklar zaman zaman o dizinin binom dönüşümü olarak adlandırılmaktadır.

İleri farklar Nörlund-Rice integrali yardımıyla hesaplanabilmektedir. Bu tür dizilerin integral biçimindeki ifadesinin ilginç olmasının nedeni asimptotik açılım ve sırt noktası yöntemleriyle hesaplanabiliyor oluşlarıdır. Öte yandan, ileri fark dizilerini hesaplamak artan n değerleri için gittikçe güçleşmektedir.

Newton dizisi

Adını Isaac Newton'dan alan ve Newton ileri fark denklemi olarak da adlandırılan Newton dizisi

biçiminde tanımlanmaktadır. Bu ifade tüm f polinomları ve bazı analitik işlevler için geçerlidir. Burada

binom katsayısını,

"azalan faktöryel" ya da "alt faktöryeli" göstermektedir.

p-sel sayılar bağlamında Mahler kuramı, f'nin polinom olmasına ilişkin varsayımın f'nin sürekli olmasına ilişkin varsayıma değin zayıflatılabileceğini savunmaktadır.

Carlson kuramı bir Newton dizisinin özgün olması için gerekli ve yeterli koşulları belirlemektedir. Ne var ki, Newton dizileri genellikle tanımlı değillerdir.

Newton dizisi, Stirling dizisi ve Selberg dizisi genel fark dizisinin özel durumlarıdırlar. Bu dizilerin tümü ölçeklenmiş ileri farklar cinsinden tanımlanabilmektedir.

Sonlu fark işleci kuralları

Türev alma kurallarına benzer biçimde

  • Sabit kuralı: c sabit bir sayıysa
eşitliği sağlanır.
  • Doğrusallık: a ve b sabit sayılar ise
eşitliği sağlanır.

Bu kurallar ve 'nın da içinde bulunduğu tüm fark işleçleri için geçerlidir.

ya da
  • Toplam kuralları:

Belirsiz toplam

İleri fark işlecinin ters işleci belirsiz toplamdır.

Genellemeler

Fark işleci bir kısmi sıralı küme üzerinde Möbius evirtimine dönüşmektedir.

Ayrıca bakınız

  • Newton polinomu
  • Newton dizileri tablosu
  • Lagrange polinomu
  • Gilbreath önermesi

Kaynakça

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Limit</span> Sayıların ucu

Limit kelimesi Latince Limes ya da Limites 'den gelmekte olup sınır, uç nokta anlamındadır. Öklid ve Arşimet tarafından eğrisel kenarlara sahip şekillerle ilgili olan teoremlerde kullanılmıştır. Limit kavramı, çok önceleri kullanılmasına rağmen sonra unutulmuş ve daha sonra Newton ile Leibniz'in eserlerinde görülmüştür. Mesela, diferansiyel hesapta bir eğri sonsuz küçük uzunlukta sonsuz kenara sahip bir çokgen olarak kabul edilir. Limit kavramından ortaya çıkan diferansiyel hesap, pek çok fizik probleminin kolayca ele alınmasını sağlar.

<span class="mw-page-title-main">Pascal üçgeni</span>

Pascal üçgeni, matematikte binom katsayılarını içeren üçgensel bir dizidir. Fransız matematikçi Blaise Pascal'ın soyadıyla anılsa da Pascal'dan önce Hindistan, İran, Çin, Almanya ve İtalya'da matematikçiler tarafından çalışılmıştır.

Matematikte binom açılımı, iki sayının toplamının üslü ifadesinin cebirsel açılımıdır. Teoreme göre, (x + y)n formatında yazılmış bir polinom, b,c 0, b +c = n, axbyc formatındaki terimlerin toplamı şeklinde yazılabilir. Bu ifadede b,c,n N, b 0, c 0, b+c=n, a> 0 koşulları sağlanmalıdır.

<span class="mw-page-title-main">Dirac delta fonksiyonu</span>

Adını Paul Dirac' tan alan Dirac delta fonksiyonu tek boyutta

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Binom dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, binom dağılımı n sayıda iki kategori (yani başarı/başarısızlık, evet / hayır, 1/0 vb) sonucu veren denemelere uygulanır. Araştırıcının ilgi gösterdiği kategori başarı olarak adlandırılır. Bu türlü her bir deneyde, bağımsız olarak, başarı (=evet=1) olasılığının p olduğu (ve yalnızca iki kategori sonuç mümkün olduğu için başarısızlık olasılığının 1 - p olduğu) bilinir. Bu türlü bağımsız n sayıda denemeler serisi içinde elde edilen başarı sayısının ayrık olasılık dağılımı binom dağılım olarak tanımlanır. Bir binom dağılım sadece iki parametre ile, yani n ve p ile tam olarak tanımlanır. Matematik notasyon olarak bir rassal değişken X binom dağılım gösterirse şöyle ifade edilir:

X ~ B(n,p)
<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Negatif binom dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında negatif binom dağılım bir ayrık olasılık dağılım tipi olup Pascal dağılımı ve Polya dağılımı bu dağılımın özel halleridir.

<span class="mw-page-title-main">Diskriminant</span>

Diskriminant matematik biliminde bir cebirsel kavramdır. Gerçel katsayılı ikinci derece polinom denklemlerin çözümü için kullanılır. İkinci dereceden büyük herhangi bir polinomun köklerinin bulunması için de bu kavram, köklerin toplamı için gereken ifadenin ve köklerin çarpımı için gereken ifadenin bulunması suretiyle genişletilmiştir. Bir polinom için çoklu köklerin varlığı veya yokluğu için gereken koşul da diskriminantın varlığı ve yokluğu ile bulunabilmektedir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Tümleşik matematikte binom dönüşümü bir dizinin ileri farklarını hesaplamaya yarayan bir dizi dönüşümüdür. Kavram, binom dönüşümünün Euler dizisine uygulanması sonucu oluşan Euler dönüşümüyle yakından ilintilidir.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Katalan sayıları, kombinatorik matematikte birçok problemin çözümünde kullanılabilen özel bir sayı dizisi. Adını Belçikalı matematikçi Eugène Charles Catalan(1814-1894)’dan alan bu dizinin terimleri,

Sonlu fark, f(x + b) − f(x + a) matematiksel ifadesidir.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

Kravçuk polinomları ilk defa Mykhailo Kravchuk tarafından incelenmiş, binom dağılımı ile yakından ilgili ayrık dik polinomlardır.

Verlet entegrasyonu, Newton'un hareket denklemlerini uygulamak için kullanılan nümerik yöntemlerden biridir. Genellikle Moleküler dinamik simülasyonlarında parçacıkların bir sonraki zaman dilimindeki konumlarını belirlemek için kullanılır. Hız hesaplaması yerine sadece o anki konum, önceki konum ve o anki ivmeyi kullanan bu yöntem Euler yönteminden daha isabetlidir ve gerektirdiği işlem sayısı pek farklı değildir. İlk defa 1791 yılında Delambre tarafından kullanılmıştır ve o zamandan beri çok kez yeniden keşfedilmiştir: 1909'da Cowell and Crommelin tarafından Halley kuyruklu yıldızı'nın yörüngesini hesaplamak için veya 1907'de Carl Størmer tarafından manyetik alandaki elektrik yüklü parçacıkların yörüngesini incelemek için kullanılması gibi. Daha sonra 1960'larda Loup Verlet tarafından moleküler dinamikte kullanıldı.

Matematik alanında, toplam veya genel toplam olarak sonuçlanan, toplananlar ya da toplamalar diye adlandırılan bir sayı dizisinin eklenme sürecine toplam/toplama denir. Sayıların yanı sıra, fonksiyonlar, vektörler, matrisler, polinomlar ve genelde "+" işareti ile tanımlanmış işleme sahip diğer tüm matematiksel nesne türleri de toplanabilir.