İçeriğe atla

Faktöriyel moment

Olasılık kuramı içinde ninci bir olasılık dağılımı için faktöriyel moment veya anılan olasılık dağılımı gösteren bir X rassal değişkeni için faktöriyel moment şöyle belirlenir:

Burada

bir azalan faktöriyel olur.[1]

Örneğin, eğer X, beklenen değeri λ olan bir Poisson dağılımı gösteriyorsa, Xin ninci faktöriyel moment şöyle ifade edilir:

Ayrıca bakınız

  • Momentler
  • Kümülant
  • Faktöriyel moment üreten fonksiyon

Kaynakça

  1. ^ Burada bir isimsel kargaşalığa dikkat edilmesi gerekir. Burada kombinatorik alanı üzerinde çalışan matematikçilerin kullandığı notasyon verilmiştir. Aynı notasyon ile Pochhammer sembolu (x)ni diğer bazı matematikçiler, özellikle özel fonksiyonlar kuramı üzerinde çalışanlar, verilenin notasyonun tam aksi olarak artan faktöriyel x(x + 1)(x + 2) ... (x + n - 1) olarak kullanmaktadırlar.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Negatif binom dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında negatif binom dağılım bir ayrık olasılık dağılım tipi olup Pascal dağılımı ve Polya dağılımı bu dağılımın özel halleridir.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Weibull dağılımı</span> Olasılık dağılımı

Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

Olasılık kuramı ve bir dereceye kadar istatistik bilim dallarında basıklık kavramı 1905da K. Pearson tarafından ilk defa açıklanmıştır. Basıklık kavramı bir reel değerli rassal değişken için olasılık dağılımının, grafik gösteriminden tanımlanarak ortaya çıkarılan bir kavram olan, sivriliği veya basıklığı özelliğinin ölçümüdür. Basıklık kavramının ayrıntıları olasılık kuramı içinde geliştirilmiştir. Betimsel istatistik için bir veri setinin basıklık karakteri pek dikkate alınmayan bir özellik olarak görülmektedir. Buna bir neden parametrik çıkarımsal istatistik alanında basıklık hakkında hemen hemen hiçbir kestirim veya sınama bulunmamasındandır ve pratik istatistik kullanımda basıklık pek önemsiz bir karakter olarak görülmektedir. Belki de basıklık ölçüsünün elle hesaplanmasının hemen hemen imkânsızlığı buna bir neden olmuştur.

<span class="mw-page-title-main">Laplace dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı ve istatistik bilim dallarında, bir rassal değişken X için, eğer beklenen değer var ise, moment üreten fonksiyon şöyle tanımlanır:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

Olasılık kuramı ve istatistik bilim dallarında bir olasılık dağılımı için kinci standardize edilmiş moment olarak tanımlanır. Burada kinci ortalama etrafındaki moment ve σ standart sapma olur. Bu kinci momentin standart sapma ya göre normalize edilmesidir.

Olasılık kuramı ve istatistik bilimsel dallarında bir reel-değerli rassal değişken için k-ıncı ortalama etrafındaki moment, E beklenen değer operatörü olursa

μk := E[(X - E[X])k]

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken Xin μ = E(X) olarak ifade edilen beklenen değeri ve σ² = E((X - μ)²) olarak ifade edilen varyansı bulunur. Bunlar ilk iki kümülant olarak belirlenirler; yani

κ1 = μ ve κ² = σ².

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Normalleştirme sabiti, olasılık kuramı ve matematiğin diğer çeşitli alanlarında ortaya çıkar. Örneğin normal dağılımın normalleştirme sabitini hesaplamak için Gauss integrali kullanılabilir.