İçeriğe atla

Eylemsizlik momenti

Eylemsizlik momenti
Cambazın elinde uzun bir çubuk var. Çubuğun uzun olması, onun eylemsizlik momentini arttırarak dönmeye karşı direnç oluşturur ve cambazın dengeyi sağlamasına yardımcı olur.
Yaygın sembol(ler):I
SI birimi:kg · m2

Atalet momenti veya eylemsizlik momenti (SI birimi kilogram metrekare - kg·m²), dönmekte olan bir cismin, dönme hareketine karşı durmasına eylemsizlik momenti denir. Eylemsizlik momenti, toplam dönme hareket gücüne karşı direnç oluşturur ve bu yüzden cisim, tam verimde dönemez.

Tanım

Döner sandalye deneyi eylemsizlik momentini açıklar. Sandalyede dönen profesör kollarını açtığında eylemsizlik momenti artar; açısal momentumu korumak için açısal hızı azalır. Deney Makedonya Üsküp Cyril ve Methodius Üniversitesinden Prof. Oliver Zajkov tarafından yapılmıştır.

Eylemsizlik momenti katı (bükülmez) cisimlerin, kendi rotasyon hareketlerindeki değişime karşı eylemsizliğini gösterir. Duran bir cismin eylemsizliği cismin kütlesi olduğu gibi, dönen bir cismin eylemsizliği de eylemsizlik momentidir. Eylemsizlik momenti kavramı iki başlık altında incelenir. Alan eylemsizlik momenti ve kütlesel eylemsizlik momenti:

  1. Alan eylemsizlik momenti (Kesit/Polar atalet momenti): Rastgele seçilen bir koordinat sistemine göre bir cismin iki boyutu (yüzeyi) ele alınmış olsun. Bu yüzey, rastgele seçilen koordinat sisteminin bir eksenine dik olsun. Yüzeyin şekil değiştirmeme isteğinin yüzeyi içine alan eksenlere göre tanımlanmış haline alan eylemsizlik momenti denir. Cismin seçilen yüzeyine dik eksen z ekseni olsun. Yani incelenen düzlem x-y düzlemi üzerindedir. Bu şekliyle alan eylemsizlik momenti x eksenine ve y eksenine göre ayrı ayrı tanımlanabilir.
  2. Eylemsizliğin bulunması istenen yüzey homojen ve tek boyutlu ise ; iki boyutlu ise ; üç boyutlu ise kullanılır.
  3. Alan eylemsizlik momenti formülü, malzemelerin burulması ve eğilmesiyle ilgili hesaplamalarda kullanılır. Özet olarak, yüzey şeklini değiştirmeye çalışan kuvvete koyduğu tepkidir. Birimi metre4 dür. Yani yüzeyin ufak bir değişimine olan tepki çok fazla yansıyacaktır.
  4. Kütlesel Atalet Momenti: Hareketin çeşitli koordinat sistemlerinde (kartezyen koordinat sistemi, yarı kutupsal koordinat sistemi, doğal koordinat sistemi) vektörel olarak tanımlanmasıyla, yer vektörünün zamana göre iki kez türevi alınmasıyla ivmenin vektörel olarak büyüklüğü belirlenmiş olur. Bu ivmeye ait kütle eylemsizlik momenti oluşturur. Bu da formülasyonu ile gösterilmektedir.
  5. Kütlesel atalet momentini tanımlamak için hareketli cismin dinamik (hareketli) ve statik(durgun) hallerdeki durumlarına uygun olan, cisim üzerinden noktalar belirlenmelidir.
  6. Genel olarak statik cisimler tek noktaya indirgenir. Yani, durgun halde L uzunluğunda homojen bir silindirin ağırlık ve kütle merkezi olan tam ortasına indirgenir ve sanki cisim orada toplanmış gibi düşünülür. Fakat dönme veya salınım hareketi yaptığında bir noktaya göre tanımlamak bazı durumlarda dinamik özellikleri yansıtmayabilir. Bu nedenle, çubuğu iki noktaya ya da dönme veya salınım hızı arttıkça üç noktaya indirgenebilir. Hareketin karmaşıklığı arttıkça kütlenin indirgendiği nokta sayısı da arttırılabilir. Fakat dört noktadan fazlası problemin çözümünden sapmayı arttırır.
Eylemsizlik momenti örnekleri

Hesaplanması

kütleli noktasal bir cisim uzaklığındaki bir eksen etrafında dönerse bu cismin eylemsizlik momenti olarak tanımlanır. Eğer cisim çok sayıda parçacıktan oluşmuşsa her bir parçacığın si toplanarak cismin eylemsizlik momenti bulunur. Yani cisim sonsuz küçüklükteki kütlelerinden meydana geliyorsa bu cismin eylemsizlik momenti
olur.
Örneğin boyundaki kütleli düz bir çubuğun kütle merkezinden geçen eksene göre eylemsizlik momenti şöyle hesaplanır:

  1. boyundaki küçük bir parçanın kütlesi ise
  2. Eksen çubuğun kütle merkezinden geçtiği için integralin sınırları ve olur. Bulduğumuz yi formülde yerine koyarsak
  3. ve sabit olduğundan integralin dışına çıkar, integrali çözersek

bulunur.

Paralel eksenler teoremi

Paralel eksenler teoremi, kütle merkezinden geçen eksene göre eylemsizlik momenti bilinen bir cismin bu eksenden uzaklıktaki eksene göre eylemsizlik momentini bulmaya yarar. Bu teoreme göre

Örneğin bir çubuğun ucuna göre eylemsizlik momenti paralel eksenler teoremi kullanılarak şu şekilde hesaplanır:
Çubuğun kütle merkezine göre eylemsizlik momenti , çubuğun ucu, merkezden uzaklıkta. Denklemde bunları yerine koyarsak

Bu sonuç bir çubuğu; merkezinin etrafında döndürmenin, ucunun etrafında döndürmeye göre daha kolay olduğunu gösterir.

Kütleyle olan benzerliği

Kütle, bir cismin öteleme hareketindeki eylemsizliğidir. Eylemsizlik momentiyse dönme hareketindeki eylemsizliktir. Bu ikisi arasındaki benzerlik hareket formüllerinde görülebilir.

Öteleme hareketiDönme hareketi
Öteleme kinetik enerjisi ve dönme kinetik enerjisi
Doğrusal momentum ve açısal momentum
Kuvvet ve tork

Bâzı cisimlerin eylemsizlik momentleri

Aşağıdaki hesaplamalarda cisimlerin homojen oldukları kabul edilmiştir.

NOT: Dönme ekseni aksi belirtilmedikçe kütle merkezi olarak kabul edilecektir. Ix dönme eksenin x ekseni,Iy dönme eksenin y ekseni, Iz dönme eksenin z ekseni olduğunu gösterir.

TanımŞekilEylemsizlik MomentiAçıklama
r yarıçaplı ve m kütleli ince silindir kabuk.
Burada silindirin kalınlığı ihmal edilecek kadar küçüktür.
İçinde silindir şeklinde oyuk bulunan büyük bir silindir. İç yarıçapı r1, dış yarıçapı r2, yüksekliği h ve kütlesi m.


 
r yarıçaplı, h yükseklikli ve m kütleli içi dolu silindir.

Bu bir önceki nesnenin r1=0 olduğu özel bir durumudur.
r yarıçaplı ve m kütleli ince, içi dolu disk.

Bir önceki nesnenin h=0 için özel durumudur.
r yarıçaplı ve m kütleli çember.

Burada Iz dönme ekseninin z olduğunu gösterir.
r yarıçaplı ve m kütleli içi dolu küre.
Bir disk yarıçapı 0'dan r kadar değişen disklerin sonsuz ince disklerin birleşimi olarak kabul edilebilir.
r yarıçaplı m kütleli içi boş küre.
Katı küreye benzer bir şekilde boş küre de çemberlerin birleşimi olarak düşünülebilir.
a dönme eksenli ve m kütleli, a, b ve c yarı eksenli Elipsoid
r yarıçaplı, h yüksekli ve m kütleli dik koni

Yüksekliği h, eni w, derinliği d ve kütlesi m olan dikdörtgenler prizması.


kenar uzunluklu küp için, olur.
Yüksekliği D, genişliği W, uzunluğu L ve kütlesi m olan içi dolu diktörtgenler prizması en uzun köşegen ekseninde döndürlürse.
kenarlı küp için, .
İnce diktörtgen düzlem. h yüksekliği,w genişliğ ve m kütlesi.
 
İnce diktörtgen düzlem. h yüksekliği,w genişliğ ve m kütlesi.
(Dönme ekseni diktörtgenin ucunda)
 
L uzunluklu ve m kütleli ince çubuk.
Bu eşitlik çubuğun kalınlığının önemsiz olduğunu varsayar. Bu durum bir önceki nesnenin w = L veh = 0 olduğu özel bir durumudur.
L uzunluklu ve m kütleli ince çubuk.
(Dönme ekseni çubuğun sonunda)
Bu eşitlik çubuğun kalınlığının önemsiz olduğunu varsayar. Bu da diktörtgenin h = L ve w = 0 olduğu özel bir durumudur.
İç yarıçapı a, kesit yarıçapı b ve kütlesi m olan Torus.
Çap etrafında:
Düşey eksen etrafında:
Poligon düzlemi.Kenarları , , , ..., ve kütlesi iç kısımda homojen dağılımlı, düzleme dik ve merkez ekseninde dönmekte.
Sonsuz disk. Kütlesi dönme ekseni etrafında normal dağılım göstermekte.

(Örneğin:

Burada : x ve y'nin fonksiyonu olarak kütle yoğunluğu'dur.).

Aralarında x uzaklığı bulunan M ve m kütleli iki nokta. etkin kütle'i göstermektedir.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Eylemsizlik</span> Bir cismin içinde bulunduğu düzgün hareket veya hareketsizlik durumunun sürüp gitmesi, hareketsizliğe veya hareketsizlikten harekete kendi başına geçememesi özelliği

Eylemsizlik ya da atalet, cisimlerin hareket durumlarını koruma eğilimleridir. Burada "hareket durumu" ile anlatılmak istenen, cismin diğer bir cisme göre sabit hızla hareket etmesi veya durağan halde bulunmasıdır. Maddeler için ortak özelliktir. Newton tarafından 1. hareket yasası olarak ifade edilmiştir. Bu yasa, bir cisim üzerine etkiyen dış kuvvetlerin bileşkesi sıfır olduğu zaman cismin hareket durumunun değişmeyeceğini söyler.

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Fizikte moment, fiziksel niceliğin mesafe ile bileşimidir. Momentler, genellikle sabit bir referans noktasına ya da eksene göre tanımlanırlar, ilgili referans noktasından ya da ekseninden belirli bir mesafede ölçülen fiziksel nicelikleri ele alırlar. Mesela bir kuvvetin momenti, o kuvvetin kendisinin ve bir eksenden uzaklığının çarpımıdır ve ilgili eksenin etrafında dönmeye sebep olur. Prensip olarak herhangi bir fiziksel nicelik, moment oluşturmak üzere bir mesafe ile bileşebilir. Sıkça kullanılan nicelikler içinde kuvvetler, kütleler ve elektrik yük dağılımları bulunmaktadır.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Newton'un hareket yasaları</span> Bilimsel Yasalar

Newton'un hareket yasaları, bir cisim üzerine etki eden kuvvetler ve cismin yaptığı hareket arasındaki ilişkileri ortaya koyan üç yasadır. İlk kez Isaac Newton tarafından 5 Temmuz 1687 tarihinde yayımlanan Philosophiae Naturalis Principia Mathematica adlı çalışmada ortaya konmuştur. Bu yasalar klasik mekaniğin temelini oluşturmuş, bizzat Newton tarafından fiziksel nesnelerin hareketleri ile ilgili birçok olayın açıklanmasında kullanılmıştır. Newton, çalışmasının üçüncü bölümünde, bu hareket yasalarını ve yine kendi bulduğu evrensel kütleçekim yasasını kullanarak Kepler'in gezegensel hareket yasalarının elde edilebileceğini göstermiştir.

1. Yasa
Eylemsiz referans sistemi adı verilen öyle referans sistemleri seçebiliriz ki, bu sistemde bulunan bir parçacık üzerine bir net kuvvet etki etmiyorsa cismin hızında herhangi bir değişiklik olmaz. Bu yasa genellikle şu şekilde basitleştirilir: “Bir cisim üzerine dengelenmemiş bir dış kuvvet etki etmedikçe, cisim hareket durumunu korur.”
2. Yasa
Eylemsiz bir referans sisteminde, bir parçacık üzerindeki net kuvvet onun çizgisel momentumunun zaman ile değişimi ile orantılıdır:

Bir cismin kendisi ile aynı eylemsizlik momentine ve aynı kütleye sahip sanal halkanın yarıçapına, eylemsizlik yarıçapı denir.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Katı cisim dinamiği</span>

Katı-cisim dinamiği, dış kaynaklı kuvvetler karşısında hareket eden birbiri ile ilişkili sistemlerin analizini inceler. Her bir gövde için, cisimlerin katı olduğu ve bu nedenle uygulanan kuvvetler nedeni ile deforme olmadıkları, sistemi tanımlayan taşıma ve dönme parametrelerinin sayısını azaltarak analizi basitleştirmektedir.

<span class="mw-page-title-main">Tork</span> bir kuvvetin nesnenin ekseninde, dayanak noktasında ya da çevresinde dönme eğilimi

Tork, kuvvet momenti ya da dönme momenti, bir cismin bir eksen etrafındaki dönme, bükülme veya burulma eğilimini dönme ekseni merkezine indirgeyerek ölçen fiziksel büyüklüktür. Torkun büyüklüğü moment kolu uzunluğuna, uygulanan kuvvete ve moment kolu ile kuvvet vektörü arasındaki açıya bağlıdır.

<span class="mw-page-title-main">Kütle merkezi</span>

Fizikte, uzaydaki ağırlığın dağılımının ağırlık merkezi, birbirlerine göre olan ağırlıkların toplamlarının sıfır olduğu noktadır. Ağırlık dağılımı, ağırlık merkezi etrafında dengelenir ve dağılan ağırlığın kütle pozisyon koordinatlarının ortalaması onun koordinatlarını tanımlar. Ağırlık merkezine göre formüle edildiği zaman mekanikte hesaplamalar basitleşir.

<span class="mw-page-title-main">Kurtulma hızı</span> bir cismin kendisini bağlayan kütleçekim alanından kurtulak için varması gereken hız

Fizikte, kurtulma hızı kütleçekim alanındaki herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cismin kendisini etkileyen kütleçekim alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

Genel görelilik fiziğinde, eşdeğerlik ilkesi, kütleçekimsel kütle ve eylemsiz kütle arasındaki eşdeğerlikle ilgilenen çeşitli kavramlardan biridir. Einstein'in gözlemlerine göre büyük kütleli bir cismin üzerinde durulduğunda hissedilen kütleçekimsel kuvvet, eylemsiz olmayan (ivmeli) referans çerçevesindeki bir gözlemcinin hissettiği uydurma kuvvetle aynıdır.

Fizikte konuşlanma sistemi farklı zaman dilimlerinde nesnelerin konum ve yönelim gibi özelliklerini belirlemek ve ölçmek için kullanılan bir koordinat sistemini ifade etmektedir. Ayrıca bu özelliklerin temsilinde kullanılan kümelerini de içerebilmektedir. Daha zayıf bir anlamda, bir konuşlanma sistemi yalnızca koordinatları betimlememektedir, aynı zamanda bu sistemde hareket eden nesnelerin ayırt edilmesinde her zaman dilimi için aynı üç boyutlu alanları da tanımlamaktadır.

<span class="mw-page-title-main">Kütleçekimsel elektromanyetizma</span>

Kütleçekimsel Elektromanyetizm, kısaltılmışı KEM, elektromanyetizm ve göreli kütleçekimi arasındaki eşitliklerin benzeşiklerinden oluşan bir settir; Özellikle: Maxwell'in alan eşitliği ve yakınsaması ve bazı durumlarda Einstein'ın genel göreliliğindeki alan eşitliklerinden bulunabilir. Kütleçekimsel manyetizm genelde özellikle kütleçekiminin kinetik etkilerini belirtmek için kullanılır, hareketli elektrik yükünün manyetik etkilerinin benzeşiğidir. KEM, yalıtılmış sistemlerden uzakta olduğunda ve yavaş hareket eden deney parçacıklarında daha geçerli ve doğrudur. 1893'te ilk kez genel görelilikten önce, Oliver Heaviside tarafından yayınlandığından beri benzeşiğinde ve eşitliklerinde çok az değişiklik olmuştur.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Yörünge mekaniği</span>

Yörünge mekaniği veya astrodinamik, roketler ve diğer uzay araçlarının hareketini ilgilendiren pratik problemlere, balistik ve gök mekaniğinin uygulamasıdır. Bu nesnelerin hareketi genellikle Newton'un hareket kanunları ve Newton'un evrensel çekim yasası ile hesaplanır. Bu, uzay görevi tasarımı ve denetimi altında olan bir çekirdek disiplindir. Gök mekaniği; daha genel olarak yıldız sistemleri, gezegenler, uydular ve kuyruklu yıldızlar gibi kütle çekimi etkisinde bulunan yörünge sistemleri için geçerlidir. Yörünge mekaniği; uzay araçlarının yörüngelerine ait yörünge manevraları, yörünge düzlemi değişiklikleri ve gezegenler arası transferler gibi kavramlara odaklanır ve itici manevralar sonuçlarını tahmin etmek için görev planlamacıları tarafından kullanılır. Genel görelilik teorisi, yörüngeleri hesaplamak için Newton yasalarından daha kesin bir teoridir ve doğru hesaplar yapmak ya da yüksek yerçekimini ihtiva eden durumlar söz konusu olduğunda bazen gereklidir.

<span class="mw-page-title-main">Yörünge durum vektörleri</span>

Yörünge durum vektörleri veya durum vektörleri, gök mekaniği ve yörünge mekaniğinde, konum ve hız kartezyen vektörlerin zaman (devir) ile birlikte uzaydaki yörüngede bulunan bir cismin benzersiz şekildeki gidim izinin belirlenmesidir.