İçeriğe atla

Euler toplaması

Euler toplamı, yakınsak ve ıraksak diziler için kullanılan bir toplam yöntemidir. Bir Σan dizisinin Euler dönüşümü bir değere yakınsıyorsa bu değer Euler toplamı olarak adlandırılır.

q ≥ 0 olmak koşuluyla Euler toplamı, (E, q) olarak gösterilen genel bir yöntemler kümesi içinde sayılabilir. (E, 0) olağan (yakınsak) toplamı belirtirken (E, 1) olağan Euler toplamını ifade etmektedir. Bu yöntemlerin tümü Borel toplamından güçsüzken q > 0 için Abel toplamıyla karşılaştırılamazlar.

Tanım

Euler toplamı, almaşık dizilerin yakınsaklığını hızlandırmak amacıyla kullanılmaktadır. Yöntem, ıraksak toplamların hesaplanmasını da olanaklı kılmaktadır.

Bu yöntem yineleme yoluyla uygulanamamaktadır. Bunun nedeni

eşitliğinin sağlanıyor oluşudur.

Örnekler

  • k dereceli bir polinom ise eşitliği sağlanır. Euler toplamının burada yaptığı, bir sonsuz diziyi sonlu diziye dönüştürmektir.
  • gibi bir seçim, ifadeyi doğrudan Bernoulli sayılarına götürmektedir.

Burada bir tam sayıyı, ζ ise Riemann zeta işlevini göstermektedir.

Uygun değerleri için dizi 'ye yakınsamaktadır.

Ayrıca bakınız

  • Euler dönüşümü
  • Borel toplamı
  • Cesàro toplamı
  • Lambert toplamı
  • Abel ve Tauber kuramları
  • Van Wijngaarden dönüşümü

Kaynakça

  • Korevaar, Jacob (2004). Tauberian Theory: A Century of Developments. Springer. ISBN 3-540-21058-X. 
  • Shawyer, Bruce & Bruce Watson (1994). Borel's Methods of Summability: Theory and Applications. Oxford UP. ISBN 0-19-853585-6. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">1 − 2 + 3 − 4 + · · ·</span> Matematikte sonsuz bir seri

Matematikte 1 - 2 + 3 - 4 + ..., terimlerinin işaretleri sırasıyla değişen ardışık pozitif tam sayıların oluşturduğu sonsuz bir seridir. Serinin ilk m teriminin toplamı, Sigma toplama gösterimi kullanılarak şöyle ifade edilebilir:

Apéry sabiti, matematiğin gizemli sayılarından biridir. Elektrodinamik alanında elektronun jiromagnetik oranının ikinci ve üçüncü derece terimlerinin yanı sıra birçok fiziksel soruda karşılaşılan bu sabit, paydasında üstel fonksiyon barındıran integrallerin çözümünde de kullanılmaktadır. Debye modelinin iki boyut için hesaplanması buna örnek olarak gösterilebilir. Sayı, aşağıdaki gibi tanımlanmaktadır.

<span class="mw-page-title-main">Harmonik seriler</span>

Harmonik seri ıraksak bir seridir, harmonik sözcüğü ise müzikten devşirilmiştir.

Matematikte ıraksak seri yakınsak olmayan bir sonsuz seridir. Bu, serinin kısmi toplamlarının herhangi bir limit değeri olmadığı anlamına gelmektedir.

Matematiksel çözümlemede Cesàro toplamı bir sonsuz diziye toplam değeri atamanın farklı bir yoludur. Bir dizi A toplamına yakınsıyorsa bu dizinin Cesàro toplamı da A olur. Cesàro toplamı, yakınsamayan dizilere de değer atayabilmektedir. Ne var ki, artı sonsuz değerine yönelen bir dizi hiçbir koşulda sonlu bir toplam değerine sahip olamayacaktır.

Borel toplamı dizilerin toplamına ilişkin bir genellemedir. Bu terim, herhangi bir toplam değeri olmayan diziler için bile bir büyüklük değeri tanımlayabilmektedir.

Tümleşik matematikte binom dönüşümü bir dizinin ileri farklarını hesaplamaya yarayan bir dizi dönüşümüdür. Kavram, binom dönüşümünün Euler dizisine uygulanması sonucu oluşan Euler dönüşümüyle yakından ilintilidir.

Matematikte Dirichlet serisi

<span class="mw-page-title-main">Dirichlet eta işlevi</span>

Matematiğin analitik sayı kuramı alanında Dirichlet eta işlevi

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

Basel problemi, Pietro Mengoli tarafından 1644'te ortaya atılan ve 1735 yılında Leonhard Euler tarafından çözülen ünlü bir sayı kuramı problemidir. Zamanın matematikçilerini bir hayli uğraştırmış olan problem Euler'i 28 yaşında büyük ün sahibi yapmıştır. Euler, problemi genelleştirmiş ve onun düşünceleri Bernhard Riemann'ın 1859'da yazdığı Belirli Bir Büyüklükten Küçük Asal Sayılar Üzerine adlı makaleye esin kaynağı olmuştur. Problem, adını Euler'in ve Bernoulli ailesinin yaşadığı kent olan Basel'den almıştır.

Olasılık kuramında Borel–Cantelli önermesi olay dizilerine ilişkin bir savdır. Ölçü kuramının bir sonucu olan önerme Émile Borel ve Francesco Paolo Cantelli'ye adanmıştır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.

Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.