İçeriğe atla

Euler spirali

Çift sonlu Euler spirali.

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

  • Eğimi teğetin düzgün kesitinden başlayarak lineer olarak eğri boyunca artar.
  • Euler spiralinin dairesel eğriyle karşılaştığı yerde eğimi dairesel eğrinin eğimine eşit olur.

Uygulamaları

Geçiş eğrisi

Dairesel yörüngede hareket eden bir nesne merkezcil ivmeye maruz kalır. Bir araç düz bir yörüngeden dairesel bir yörüngeye yaklaşırken aniden teğet noktasında başlayan merkezcil ivmeyi hissedecektir. İlk demiryollarında trenlerin düşük hızla hareket etmesinden ve yörüngelerin geniş yarıçaplı eğrilerden oluşmasından dolayı şimdiki yanal kuvvet uygulaması bir sorun oluşturmamaktaydı. Demiryolu taşıtlarının hızı günden güne arttıkça konforun gerekli olduğu ortaya çıktı. Bu yüzden de merkezcil ivme yolculuk mesafesiyle doğrusal olarak artmaktadır. Konforun sağlanması için eğimi alınan mesafeyle doğrusal olarak artan bir eğri çözüm olarak bulundu. Bu geometrik ifade Euler spiralidir. Leonhard Euler'in geometri çözümünden habersiz olarak Rankine Euler spiralinin dairesel bir eğriye yakınsayan bir parabol üzerindeki küçük açısal değişiklikler üzerinden yapılan bir yaklaşımı olan kübik eğriden (3. dereceden polinom) bahsetmiştir. Marie Alfred Cornu ve daha sonra başka inşaat mühendisleri de Euler spiralinin hesaplamalarını birbirlerinden bağımsız olarak çözmüşlerdir. Günümüzde Euler spiralleri yaygın olarak demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve yatay dairesel eğri arasında geçişi ve konforu sağlamak için kullanılır.

Optik

Cornu spirali kırınım desenini betimlemek için kullanılır.[1]

Formülasyon

Semboller

Eğim yarıçapı
Spiralin sonundaki dairesel eğimin yarıçapı
Başlangıç noktasından spiral üzerindeki herhangi bir noktaya kadar uzanan eğrinin açısı.
Bütün spiralin açısı
Başlangıç noktasından başlanarak spiral boyunca katledilen uzunluk
Spiral eğrisinin uzunluğu

Çıkarımlar

Sağ taraftaki grafik Euler spiralinin negatif x ekseni boyunca uzanmış düz bir çizgiyle bir çember arasındaki geçiş eğrisi olarak kullanıldıgını göstermektedir. Spiral pozitif x ekseni üzerindeki orijinden başlayarak gitgide saat yönünün tersinde dönerek çembere değer. Spiral ilk kadrandaki çift sonlu Euler spiralinin yukarısındaki küçük bir kısımdır.

Eğim tanımından yola çıkılarak,
Aşağıdaki şekilde yazarsak,
ya da ::
Böylece
olur.
Eğer
olduğunu kabul edersek,
.
Böylece :: elde ederiz.

Fresnel integral açılımı

A'nın olduğu yani Euler eğrisinin normalize edilebilir olduğu durumlarda kartezyen koordinatlar Fresnel integrali (ya da Euler integrali) ile aşağıdaki gibi belirlenir:

Kosinüs açılımına göre C(L)'yi :

Sinüs açılımına göreyse S(L)'yi:

bu şekillerde elde ederiz.

Normalize etme ve sonuç

Verilen Euler eğrisi için:

ya da

geçerliyse,

where and .

Euler spiralinin (x,y) cinsinden çözümünün elde edilme süreci şu şekilde belirlenebilir:

  • Orijinal Euler spiralinin uzunluğu L a ile çarpılarak normalize edilmiş Euler spiralinin uzunluğu Le eşlenir;
  • Fresnel integralinden (x',y') bulunur; ve
  • (x',y') 1/a oranında arttırılarak (x,y)'ye eşlenir. (1/a > 1)

Normalizasyon süresince,

Normalizasyon genel olarak Lı 1'den küçük bir değere götürür.

Örnekleme

Verilen:

değerleri için,

olur.

Euler spiralini √60,000 küçültürsek, yani normalize Euler spiralinin 100√6 olması durumunda:

ve

Yukarıda iki açı da aynı. Bu orijinal ve normalize edilmiş Euler spirallerinin benzer geometrilere sahip oldugunu göstermektedir. Normalize eğrinin konumu Fresnel integraliyle belirlenebilirken, orijinal Euler spiralinin konumu ise denormalizasyonla elde edilir.

Normalize Euler spiralinin diğer özellikleri

Normalize Euler spirali şu şekilde ifade edilir:

ve normalize Euler spiralinin bazı özellikleri şunlardır:

ve

Euler spiral üretmek için gereken kodlar

Aşağıdaki Sage koduyla yukarıdaki ikinci grafik elde edilebilir. İlk 4 satır Euler spirali bileşenlerini ifade eder. fresnel fonksiyonlarının yerine iki Taylor seri açılımı adapte edilmiştir. Geriye kalan kodlarsa sırayla teğet ve daireyi ifade eder.

  var('L')
  p = integral(taylor(cos(L^2), L, 0, 12), L)
  q = integral(taylor(sin(L^2), L, 0, 12), L)
  r1 = parametric_plot([p, q], (L, 0, 1), color = 'red')
  
  r2 = line([(-1.0, 0), (0,0)], rgbcolor = 'blue')
  
  x1 = p.subs(L = 1)
  y1 = q.subs(L = 1)
  R = 0.5
  x2 = x1 - R*sin(1.0)
  y2 = y1 + R*cos(1.0)
  r3 = circle((x2, y2), R, rgbcolor = 'green')
  show(r1 + r2 + r3, aspect_ratio = 1, axes=false)

Aşağıdaki Mathematica kodu da Euler spiralinin bileşenleri içindir; wolframalpha.com'da sorunsuz bir şekilde çalışır.

  ParametricPlot[
   {FresnelC[Sqrt[2/\[Pi]] t]/Sqrt[2/\[Pi]],
    FresnelS[Sqrt[2/\[Pi]] t]/Sqrt[2/\[Pi]]},
   {t, -10, 10}]

Kaynakça

  1. ^ Eugene Hecht (1998). Optics (3rd edition). Addison-Wesley. s. 491. ISBN 0201304252. 

Konuyla ilgili okumalar

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Gül (matematik)</span>

Matematikte gül veya rodonea, kutupsal koordinat sisteminde çizilmiş bir sinüs ya da kosinüs eğrisine denir. Gül eğrisi, aşağıdaki kutupsal denklemle ifade edilir:

<span class="mw-page-title-main">Kardiyoit</span>

Matematikte kardiyoit veya yürek eğrisi, sabit bir çember üzerinde yuvarlanmakta olan aynı yarıçaplı ikinci bir çember üzerindeki herhangi bir noktanın izlediği eğridir. İsmi Yunanca kardia (kalp) ve eidos (şekil) kelimelerinin birleşiminden oluşur. Kalp (♥) şeklini anımsattığı için bu ismi almıştır. Kardiyoit ismini ilk kullanan, 18. yüzyıl İtalyan matematikçisi Johann Castillon olmuştur.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

<span class="mw-page-title-main">Fresnel integrali</span>

Fresnel integrali, S(x) ve C(x), iki transendental fonksiyon'dur. Augustin-Jean Fresnel'e atfedilmiştir ve optikte kullanılmaktadır. Yakın alan Fresnel difraksiyon fenomeninde ortaya çıkar; aşağıdaki integral gösterimi ile tanımlanırlar:

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Gauss-Legendre Algoritması π sayısının basamaklarını hesaplamak için kullanılan bir algoritmadır. Sadece 25 iterasyonda π sayısının 45 milyon basamağını doğru olarak hesaplıyor.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Bu bir Küresel harmonikler ortonormalize tablosudur ve Bu Condon-Shortley fazı l = 10 dereceye kadar sağlanır.Bazen bu formüllerin "Kartezyen" yorumu verilir.Bu varsayım x, y, z ve r Kartezyen-e-küresel koordinat dönüşümü yoluyla ve ye ilişkindir:

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Episikloid</span> Matematikte bir yuvarlanma eğrisi

Geometride, bir episikloid, sabit bir çemberin etrafında kaymadan yuvarlanan bir çemberin çevresi üzerinde seçilen bir noktanın yolunu izleyerek üretilen bir düzlem eğrisidir -buna episikl (epicycle) denir. Bu, yuvarlanma eğrisinin özel bir türüdür.

<span class="mw-page-title-main">Hipotrokoid</span> Bir dairenin dışındaki bir noktanın başka bir dairenin içinde yuvarlanmasıyla izlenen eğri

Geometride hipotrokoid, R yarıçaplı sabit bir çemberin içinde yuvarlanan r yarıçaplı bir çembere bağlı olan bir nokta tarafından izlenen bir yuvarlanma eğrisidir, burada nokta iç çemberin merkezinden d kadar bir mesafededir.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

<span class="mw-page-title-main">Trigonometrik yerine koyma</span> trigonometrik fonksiyonları içeren integrallerin hesaplanması için yöntem

Matematikte, bir trigonometrik yerine koyma veya trigonometrik ikame, trigonometrik fonksiyon yerine başka bir ifadeyi koyar. Kalkülüste trigonometrik ikameler integralleri hesaplamak için kullanılan bir tekniktir. Bu durumda, radikal fonksiyon içeren bir ifade trigonometrik bir ifade ile değiştirilir. Trigonometrik özdeşlikler cevabı basitleştirmeye yardımcı olabilir. Diğer yerine koyma yoluyla integrasyon yöntemlerinde olduğu gibi, belirli bir integrali değerlendirirken, integrasyon sınırlarını uygulamadan önce, ters türevin sonucunu tam olarak çıkarmak daha basit olabilir.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.