İçeriğe atla

Euler dörtgen teoremi

Leonhard Euler (1707–1783) adını taşıyan Euler dörtgen teoremi veya Euler'in dörtgenler yasası, dışbükey bir dörtgenin kenarları ile köşegenleri arasındaki ilişkiyi açıklar. Pisagor teoreminin genellemesi olarak görülebilecek Paralelkenar yasasının bir genellemesidir. Bu nedenle Pisagor teoreminin dörtgenler açısından yeniden ifade edilmesi bazen Euler-Pisagor teoremi olarak adlandırılır.

Teorem ve özel durumlar

Kenarları , köşegenleri ve ve iki köşegenin orta noktalarını birleştiren doğru parçası olan olan bir dışbükey dörtgen için aşağıdaki denklem geçerlidir:

Dörtgen bir paralelkenar ise, o zaman köşegenlerin orta noktaları çakışır, böylece bağlantı doğru parçası 'nin uzunluğu 0 olur. Ayrıca paralel kenarlar eşit uzunluktadır, bu nedenle Euler teoremi;

haline indirgenir ki bu da paralelkenar yasasıdır.

Dörtgen bir dikdörtgen ise denklem daha da basitleşir, çünkü artık iki köşegen de eşit uzunluktadır:

Denklemin her iki tarafını 2 ile bölüp sadeleştirmek Euler-Pisagor teoremini verir:

Başka bir deyişle, dörtgenin bir dikdörtgen olması durumunda, dörtgenin kenarları ile köşegenleri arasındaki ilişkisi Pisagor teoremi ile tanımlanır.[1]

Diğer formülasyon ve genişlemeler

Paralelkenar ile Euler teoremi

Euler başlangıçta yukarıdaki teoremi, ek bir noktanın eklenmesini gerektiren ancak daha yapısal kavrayış sağlayan biraz farklı bir teoremden doğal olarak türetmiştir.

Verilen bir dışbükey dörtgeni için Euler, bir paralelkenar oluşturacak şekilde ilave bir noktası getirdi ve böylece aşağıdaki eşitlik geçerlidir:

Paralelkenarın parçası olmayan dörtgenin noktası ile ilave noktası arasındaki uzunluğu, dörtgenin paralelkenardan ne kadar saptığını ölçmek olarak düşünülebilir ve , paralelkenar yasasının orijinal denklemine eklenmesi gereken düzeltme terimidir.[2]

, 'nin orta noktası olmak üzere 'dir. , 'nin orta noktası olduğunda aynı zamanda 'nin de orta noktası olur, ve, her ikisi de paralelkenarının köşegenidir. Bu eşitliğini verir ve dolayısıyla'dir. Bu nedenle, Kesişme teoremi|nden (ve onun tersinden) şu sonuca varır: ve paraleldir ve, bu da Euler teoremini verir.[2]

Euler teoremi, çaprazlanmış ve düzlemsel olmayanları içeren daha büyük bir dörtgenler kümesine genişletilebilir. Basitçe dört rastgele noktadan oluşan genelleştirilmiş dörtgenler için geçerlidir. bir döngü çizgesi oluşturacak şekilde kenarlarla birbirine bağlanır.[3]

Notlar

  1. ^ Lokenath Debnath (2010), The Legacy of Leonhard Euler: A Tricentennial Tribute, World Scientific, ss. 105-107, ISBN 9781848165267 
  2. ^ a b Deanna Haunsperger & Stephen Kennedy (2006), The Edge of the Universe: Celebrating Ten Years of Math Horizons, MAA, ss. 137-139, ISBN 9780883855553 
  3. ^ Geoffrey A. Kandall (Kasım 2002), "Euler's Theorem for Generalized Quadrilaterals" (PDF), The College Mathematics Journal, 33 (5), ss. 403-404, JSTOR 1559015, 18 Ağustos 2021 tarihinde kaynağından arşivlendi (PDF), erişim tarihi: 18 Ağustos 2021 

Kaynakça

Dış bağlantılar

Konuyla ilgili yayınlar

  • Ayoub, A. B. (2002), "Euler's quadrilateral theorem and its connection to Apollonius theorem", Mathematics and Computer Education, 36 (3), s. 227 
  • Josefsson, M. (2017), "Properties of bisect-diagonal quadrilaterals" (PDF), The Mathematical Gazette, 101 (551), s. 214, 28 Ekim 2020 tarihinde kaynağından arşivlendi (PDF), erişim tarihi: 25 Ekim 2020 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Paralelkenar</span>

Paralelkenar, karşılıklı kenarları eşit olan ve iç açıları toplamı 360 derece olan bir dörtgendir. Karşılıklı kenarları paralel ve uzunlukları eşittir.

<span class="mw-page-title-main">Eşkenar dörtgen</span>

Matematiğin bir alt dalı olan Geometride bir eşkenar dörtgen, dört kenarlı ve tüm kenar uzunlukları birbirine eşit bir dörtgendir. Oyun kâğıtlarında görülen eşkenar dörtgene karo, bu şekle sahip olan haplara lozanj, bu şekle sahip olan beyzbol oyun sahasına diamond (elmas) denir.

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Paralelkenar yasası</span>

Matematikte paralelkenar yasasının en temel formu, temel geometriye aittir. Yasa, paralelkenarın tüm kenarlarının karelerinin toplamının köşegenlerinin karelerinin toplamına eşit olduğunu söyler.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Pappus'un alan teoremi</span> rastgele bir üçgenin üç kenarına iliştirilmiş üç paralelkenarın alanları arasındaki ilişkiyi verir

Pappus'un alan teoremi, verilen herhangi bir üçgenin üç kenarına yaslanmış üç paralelkenarın alanları arasındaki ilişkiyi tanımlar. Pisagor teoreminin bir genellemesi olarak da düşünülebilecek teorem, adını onu keşfeden Yunan matematikçi İskenderiyeli Pappus'tan almıştır.

<span class="mw-page-title-main">Gnomon teoremi</span> Bir gnomonda meydana gelen belirli paralelkenarlar eşit büyüklükte alanlara sahiptir.

Gnomon teoremi, bir gnomon'da meydana gelen belirli paralelkenarların eşit büyüklükte alanlara sahip olduğunu belirtir. Gnomon, geometride benzer bir paralelkenarı daha büyük bir paralelkenarın bir köşesinden çıkararak oluşturulan bir düzlem şeklidir; veya daha genel olarak, belirli bir şekle eklendiğinde, aynı şekle sahip daha büyük bir şekil oluşturan bir şekildir.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Brahmagupta teoremi</span>

Geometride, Brahmagupta teoremi, eğer bir kirişler dörtgeni ortodiyagonal ise, o zaman köşegenlerin kesişme noktasından bir kenara çizilen dikmenin karşı kenarı daima ikiye böldüğünü belirtir. Adını Hint matematikçi Brahmagupta'dan (598-668) almıştır.

<span class="mw-page-title-main">İngiliz bayrağı teoremi</span>

Öklid geometrisinde, İngiliz bayrağı teoremi, dikdörtgeni içinde bir noktası seçilirse, 'den dikdörtgenin iki karşıt köşesine olan Öklid mesafelerinin karelerinin toplamının, diğer iki karşıt köşenin toplamına eşit olduğunu söyler. Denklem olarak aşağıdaki şekilde gösterilir:

<span class="mw-page-title-main">Anne teoremi</span>

Fransız matematikçi Pierre-Leon Anne'in (1806-1850) adını taşıyan Anne teoremi, dışbükey dörtgen içindeki belirli alanların eşitliğini tanımlayan Öklid geometrisinden bir teoremdir.

<span class="mw-page-title-main">Brune teoremi</span>

Brune teoremi, bir orta düzey Prusya memuru olan muhasebeci Ernst Wilhelm Brune (1790?-1860?) tarafından bulunan ve 1841 yılında Berlin'de yayınlanan, dörtgenlerle ilgili bir temel geometri teoremidir. Teorem, Öklid düzleminde bir dışbükey dörtgeninin yapıcı bir şekilde aynı alana sahip dört kısmi dörtgene nasıl bölünebileceği problemini ele alır ve yanıtlar.

<span class="mw-page-title-main">Finsler–Hadwiger teoremi</span> Bir tepe noktasını paylaşan herhangi iki kareden türetilen üçüncü bir kareyi açıklar

Finsler–Hadwiger teoremi, bir tepe noktasını paylaşan herhangi iki kareden türetilen üçüncü bir kareyi tanımlayan Öklid düzlem geometrisindeki ifadedir. Teorem adını, üçgenin kenar uzunlukları ve alanıyla ilgili Hadwiger-Finsler eşitsizliğini yayınladıkları makalenin bir parçası olarak 1937'de yayınlayan Alman ve İsviçreli matematikçi Paul Finsler ile İsviçreli matematikçi Hugo Hadwiger'den almıştır.

<span class="mw-page-title-main">Çift merkezli dörtgen</span>

Öklid geometrisinde, bir çift merkezli dörtgen, hem bir iç teğet çembere hem de çevrel çembere sahip olan bir dışbükey (konveks) dörtgendir. Bu çemberlerin çevreleri, yarıçapları ve merkezlerine sırasıyla iç çap (inradius) ve çevrel çap (circumradius), iç merkez (incenter) ve çevrel merkez (circumcenter) denir. Tanımdan, çift merkezli dörtgenlerin hem teğetler dörtgeninin hem de kirişler dörtgeninin tüm özelliklerine sahip olduğu anlaşılmaktadır. Bu dörtgenler için diğer isimler kiriş-teğet dörtgeni ve iç teğet ve dış teğet dörtgenidir. Ayrıca nadiren çift çemberli dörtgen ve çift işaretlenmiş dörtgen olarak adlandırılmıştır.

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

Dışbükey bir kirişler çokgeni, herhangi bir şekilde üçgenlere ayrıldığında ve bu şekilde oluşturulan her üçgene bir iç teğet çember çizildiğinde Japon teoremi, bu üçgenlerin iç teğet çemberlerinin yarıçapları toplamının, seçilen üçgenlemeden bağımsız bir şekilde sabit olduğunu belirtir. Bu teorem, Carnot teoremi kullanılarak kanıtlanabilir. Japon matematikçilerin eski bir geleneğine göre, bu teorem 1800'de tanrıları ve yazarı onurlandırmak için bir Japon tapınağına asılan tabletlere yazılmış bir Sangaku problemiydi.

<span class="mw-page-title-main">Kirişler dörtgenleri için Japon teoremi</span>

Geometride, Japon teoremi, bir kirişler dörtgeni içindeki belirli üçgenlerin iç teğet çember lerinin merkezlerinin bir dikdörtgenin köşeleri olduğunu belirtir.

<span class="mw-page-title-main">Kirişler dörtgeni</span> tüm köşeleri tek bir çember üzerinde yer alan dörtgen

Öklid geometrisinde, bir kirişler dörtgeni veya çembersel dörtgen veya çevrimsel dörtgen, köşeleri tek bir çember üzerinde bulunan bir dörtgendir. Bu çembere çevrel çember denir ve köşelerin aynı çember içinde olduğu söylenir. Çemberin merkezi ve yarıçapı sırasıyla çevrel merkez ve çevrel yarıçap olarak adlandırılır. Bu dörtgenler için kullanılan diğer isimler eş çember dörtgeni ve kordal dörtgendir, ikincisi, dörtgenin kenarları çemberin kirişleri olduğu içindir. Genellikle dörtgenin dışbükey (konveks) olduğu varsayılır, ancak çapraz çevrimsel dörtgenler de vardır. Aşağıda verilen formüller ve özellikler dışbükey durumda geçerlidir.

<span class="mw-page-title-main">Ters Pisagor teoremi</span> Öklid geometrisinde dik üçgenlerle ilgili bir teorem

Geometride, ters Pisagor teoremi aşağıdaki gibidir: