İçeriğe atla

Etkin popülasyon büyüklüğü

Popülasyon genetiğinde, etkin popülasyon büyüklüğü Ne (İng: effective population size), kavram olarak ilk kez Amerikalı genetikçi Sewall Wright tarafından, yol gösterici bir çalışma olarak bilinen iki farklı çalışmasında (Wright 1931, 1938) tanımlanmıştır. Wright, etkin popülasyon büyüklüğünü, "rastgele genetik sürüklenme etkisi altında, aynı alel frekansı dağılım miktarını gösteren idealleştirilmiş popülasyondaki (İng: idealized population) üreyebilen bireylerin sayısı veya göz önüne alınan popülasyona göre, aynı miktardaki yakın akraba eşleşmesi (bkz: inbred) sayısı" olarak tanımlamıştır. Wright'ın bu tanımı, popülasyon genetiğindeki birçok model için temel bir parametre oluşturur. Etkin popülasyon büyüklüğü, mutlak popülasyon büyüklüğü (N)'e (İng: population size) ya eşittir ya da ondan daha küçük bir sayı değerine sahiptir (Ayrıca bakınız: Küçük popülasyon büyüklüğü).

Tanımlar

Etkin popülasyon büyüklüğü iki şekilde tanımlanabilir; değişken etkin büyüklük (İng: variance effective size) ve akraba eşleşmesi etkin büyüklüğü (İng: inbreeding effective size). Bunlar, birbirleriyle yakın bağlantılı olup sabitleşme göstergeleri olan ve fiksasyon endeksi olarak da bilinen F-istatistiklerinden elde edilebilirler.

Değişken etkin büyüklük

Wright-Fisher idealleştirilmiş popülasyon modelinde, alel frekansı 'nin koşullu değişkenliği (İng: conditional variance), önceki neslin alel frekansı göz önüne alındığında,

ile ifade edilir. 'ı aynı gösterdiğimizde, mevcut popülasyonun değişkenlikleri de dikkate alınırsa, genelde daha büyüktür. Değişken etkin popülasyon büyüklüğü , aynı değişkenliklere sahip idealleştirimiş bir popülasyonun büyüklüğü olarak tanımlanır ve 'nin ile eşitlenmesi sonucu elde edilir ve aşağıdaki şekilde sonucunu verir.

Akraba eşleşmesi etkin büyüklüğü

Alternatif olarak, etkin popülasyon büyüklüğü, akrabalı yetiştirme katsayısının (İng: inbreeding coefficient] bir nesilden diğerine nasıl değiştiği belirtilerek ve ardından Ne'i, akrabalı yetiştirmede aynı değişimlere sahip olan idealleştirilmiş popülasyon büyüklüğü olarak gösterilmesi ile de tanımlanılabilir. Aşağıdaki sunum Kempthorne'e göredir (1957).

İdealleştirilmiş bir popülasyon için, akrabalı yetiştirme katsayıları yineleme denklemini izler.

Akrabalı yetiştirme katsayısı yerine, eşleşmenin rastgele olduğu ve biaslı üremenin olmadığı panmiktik endeksini (1 − F) kullanarak yaklaşık yineleme denklemini elde ederiz.

Nesil başına fark ise aşağıdaki şekildedir.

Akraba eşleşmesi etkin büyüklüğü, aşağıdaki denklemin çözümü ile bulunur.

Araştırmacılar nadir olarak doğrudan bu denklemi kullanmasalar da, bu

denkleminin sonucu verir.

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Binom dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, binom dağılımı n sayıda iki kategori (yani başarı/başarısızlık, evet / hayır, 1/0 vb) sonucu veren denemelere uygulanır. Araştırıcının ilgi gösterdiği kategori başarı olarak adlandırılır. Bu türlü her bir deneyde, bağımsız olarak, başarı (=evet=1) olasılığının p olduğu (ve yalnızca iki kategori sonuç mümkün olduğu için başarısızlık olasılığının 1 - p olduğu) bilinir. Bu türlü bağımsız n sayıda denemeler serisi içinde elde edilen başarı sayısının ayrık olasılık dağılımı binom dağılım olarak tanımlanır. Bir binom dağılım sadece iki parametre ile, yani n ve p ile tam olarak tanımlanır. Matematik notasyon olarak bir rassal değişken X binom dağılım gösterirse şöyle ifade edilir:

X ~ B(n,p)
<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

Rastgele genetik sürüklenme, alel sürüklenmesi veya Wright etkisi olarak da bilinen genetik sürüklenme, bir popülasyondaki mevcut bir gen varyantının (alel) frekansında rastgele şansa bağlı olarak meydana gelen değişimdir.

<span class="mw-page-title-main">Pareto dağılımı</span>

Pareto dağılımı, olasılık kuramı ve istatistik bilim dallarında birçok pratik uygulaması bulunan ve "küçük" bir nesnenin bir "büyük" nesneye dağılımında kararlılık elde edildiği hallerde kullanılan bir sürekli olasılık dağılımı veya bir güç kuramıdır. İlk olarak bir İtalyan iktisatçısı olan Vilfredo Pareto tarafından ekonomilerde bireylerin servet dağılımını göstermek için kullanılmıştır. İktisat bilim dalı dışında bu dağılım Bradford dağılımı adı altında da bilinmektedir.

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Kupon toplayıcısının problemi bir olasılık kuramı pratik problemi olarak "bütün kuponları topla ve ödün kazan" tipli yarışmalar için olasılık modeli içerir. Sorulan soru şöyle ifade edilebilir:

Yarışma için n sayıda kupon olduğu kabul edilsin ve kuponların geri koyup tekrar seçme ile toplandığı varsayılsın. Bütün n kuponları toplamak icin t sayıda örneklem deneysel seçiminden daha fazla sayıda seçim yapılması gerekliliğinin olasılığı nedir?"

<span class="mw-page-title-main">Hiperbolik fonksiyon</span>

Matematikte, hiperbolik fonksiyonlar sıradan trigonometrik fonksiyonların analogudur. Temel hiperbolik fonksiyonlar hiperbolik sinüs "sinh", hiperbolik kosinüs "cosh", bunlardan türetilen hiperbolik tanjant "tanh" ve benzer fonksiyonlardır. Ters hiperbolik fonksiyonlar alan hiperbolik sinüsü "arsinh" ve benzeri fonksiyonlardır.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

Fizikte Planck kütlesi (mP), Planck birimleri olarak bilinen doğal birimler sisteminde kütle birimidir.

Matematikte Euler sayıları, Taylor serisi açılımıyla tanımlanan bir En tam sayı dizisidir..

Sinc fonksiyonu matematik, fizik ve mühendislikte kullanılan bir trigonometrik fonksiyondur. Fonksiyonun normalize edilmemiş ve normalize edilmiş iki şekli vardır.

<span class="mw-page-title-main">Ortalama ayrıklık</span> uzayda bir nesnenin yörüngesini belirtmek için kullanılan yörünge elemanlarından biri

Gök mekaniğinde ortalama ayrıklık, bir eliptik yörünge periyodunun, yörüngedeki cismin periapsis'i geçmesinden bu yana geçen, klasik iki cisim probleminde o cismin konumunun hesaplanmasında kullanılabilecek bir açı olarak ifade edilen kesiridir. Bu, hayali bir cismin, eliptik yörüngesindeki gerçek cisimle aynı yörünge peryodunda, sabit hızla dairesel bir yörüngede hareket etmesi durumunda sahip olacağı çevre merkezden açısal uzaklıktır.

<span class="mw-page-title-main">Weber sayısı</span>

Weber sayısı (We), akışkanlar mekaniği alanında farklı iki akışkan arasındaki ara yüzeylerin bulunduğu akışkan akışlarını analiz ederken sıkça kullanılan bir boyutsuz sayıdır ve özellikle yüksek derecede eğilmiş yüzeylere sahip çok fazlı akışlar için oldukça faydalıdır. Bu sayı, Moritz Weber (1871–1951)'in adıyla anılmaktadır. Bu sayı, akışkanın eylemsizliğinin yüzey gerilimine kıyasla göreceli önemini ölçmek için kullanılan bir parametre olarak düşünülebilir. İnce film akışlarının ve damlacık ile kabarcık oluşumlarının analizinde büyük önem taşır.

<span class="mw-page-title-main">Trigonometrik integral</span> bir integral tarafından tanımlanan özel fonksiyon

Matematikte, trigonometrik integraller trigonometrik fonksiyonları içeren temel olmayan integrallerin ailesidir.