İçeriğe atla

Erimiş tuz reaktörü

Bir erimiş tuz reaktörünün şeması

Erimiş tuz reaktörü veya Eriyik tuz reaktörü (MSR) (İngilizcemolten salt reactor), baş nükleer reaktör soğutucusu ve yakıtının erimiş tuz olan IV. nesil nükleer reaktördür. MSR'ler daha yüksek bir termodinamik verimlilik için su soğutmalı reaktörlere göre daha yüksek sıcaklıklarda çalışabilmektedirler.[1] Yüksek sıcaklıklarda çalışabildikleri için bu tip nükleer reaktörlerin ısıl verimi günümüzdeki nükleer reaktörlere göre oldukça yüksektir. Ayrıca şu anki nükleer reaktörler 150 ATM ve üzeri basınçta çalışırken, erimiş tuz reaktörleri atmosferik basınçta çalışırlar, bu da çok daha güvenli ve küçük olmalarını sağlar.[2]

Nükleer yakıt (genellikle uranyum ya da Toryum) tuz içinde çözünmüş olarak bulunur. Erimiş tuz hem yakıtın nükleer reaktör içerisinde deviniminden hem de ısı enerjisinin aktarımından sorumludur. Erimiş tuz olarak bazı reaktör dizaynlarında NaF (sodyum flörür), bazılarında ise FLiBe kullanılmaktadır.

Erimiş tuz reaktörleri, ilk olarak 1954'te Amerikan ordusunun nükleer bombardıman uçağı projesi için dizayn edilmiş ve Amerikan Oak Ridge Ulusal Laboratuvarı (ORNL) tarafından 1965'te hayata geçirilmiştir. 4 yıl faaliyet gösteren bu proje, 1969'da Amerikan hükûmeti tarafından iptal edilmiş olsa da üstün güvenlik özellikleri, çok daha az nükleer atık oluşturması ve yakıt olarak uranyumdan çok daha fazla bulunan toryum kullanabilmesi sayesinde gündeme gelmiştir.

Tarihçe

"Molten Salt Reactor Experiment" (1965-1969)

1950'li yıllardan itibaren Sovyetler Birliği ile silahlanma ve teknoloji alanında bir yarışa giren Amerika Birleşik Devletleri, Sovyetler Birliği üzerindeki hava hakimiyetini artırmak için aylarca havada kalabilecek bir bombardıman uçağı projesi üzerinde çalışıyordu. Bunun için Oak Ridge Ulusal Laboratuvarı bünyesinde, bir uçağın içine sığacak boyutta bir nükleer santral geliştirme çalışmaları başladı.

MSRE (Molten Salt Reactor Experiment) tasarımı, 1965

Projenin yöneticisi, Basınçlı su reaktörünün (İngilizce: Pressurized Water Reactor, PWR) tasarımcısı, ünlü fizikçi Alvin Weinberg'dir.

Weinberg ve ekibinin hayata geçirdiği bu nükleer reaktör, 7.4 MW gücünde olup tuz olarak FLiBe (LiF ve BeF2 karışımı) ve yakıt olarak uranyum kullanmaktaydı.

4 yılın sonunda oldukça başarılı sonuçlar alınmasına rağmen dönemin Amerikan başkanı Richard Nixon tarafından projeye ayrılan bütçe tamamen kesildi ve Alvin Weinberg, Oak Ridge Labarotuvarı'ndaki görevinden alındı. Bunun nedenleri arasında, kıtalararası balistik füzelerin geliştirilmesi ve dolayısıyla nükleer uçaklara gerek kalmaması ve erimiş tuz reaktörlerinin nükleer bomba yapmaya çok uygun olmaması gösterilir. Amerikan hükümeti, bütçesini daha kolay plütonyum üretebilecek nükleer reaktör tasarımlarına ayırmayı seçmiştir.[3]

Güncel tasarımlar

Çin ve Hindistan, ulusal bilim ajansları aracılığıyla erimiş tuz reaktörleri tasarımları üzerine çalışmaktalardır. Amerika Birleşik Devletleri'nde ise bu çalışmalar birkaç şirket tarafından tamamlanmaktadır:

FliBe Energy - Sıvı Flörür Toryum Reaktörü - Liquid Flouride Thorium Reactor (LFTR)

Transatomic Power - Atık Dönüştürücü Erimiş Tuz Reaktörü - Waste Annihilating Molten Salt Reactor (WAMSR)

Terrestrial Energy - Entegre Erimiş Tuz Reaktörü - Integrated Molten Salt Reactor (IMSR)

Kaynakça

  1. ^ Williams, Stephen (16 Ocak 2015). "Molten Salt Reactors: The Future of Green Energy?". ZME Science. 29 Temmuz 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 3 Eylül 2016. 
  2. ^ "Arşivlenmiş kopya". 18 Mayıs 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mayıs 2017. 
  3. ^ "Arşivlenmiş kopya". 15 Mayıs 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mayıs 2017. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Radyoaktivite</span> Atom çekirdeğinin kendiliğinden parçalanması

Radyoaktivite, radyoaktiflik, ışınetkinlik veya nükleer bozunma; atom çekirdeğinin, daha küçük çekirdekler veya elektromanyetik ışımalar yayarak kendiliğinden parçalanmasıdır. Çekirdek tepkimesi sırasında veya çekirdeğin bozunması ile ortaya çıkar. En yaygın ışımalar alfa(α), beta(β) ve gamma(γ) ışımalarıdır. Bir maddenin radyoaktivitesi bekerel veya curie ile ölçülür.

<span class="mw-page-title-main">Arthur Compton</span> Amerikalı fizikçi (1892 – 1962)

Arthur Holly Compton, 1927'de elektromanyetik radyasyonun parçacık doğasını gösteren Compton etkisinin keşfi ile Nobel Fizik Ödülü kazanmış Amerikalı fizikçidir. Zamanında çok dikkat çeken bir buluştur. Işığın dalga doğası o zamanlarda iyi anlaşılmış olsa da ışığın hem dalga hem parçacık olabileceği fikri kolay kabul görmemiştir. Kendisi ayrıca Manhattan Projesindeki Metallurji Laboratuvarının başı ve 1945 ile 1953 seneleri arasında St. Louis Washington Üniversitesi Rektörüdür.

<span class="mw-page-title-main">Nükleer silah</span> Nükleer enerji ile yıkım gücü sağlayan silah

Nükleer silah, nükleer reaksiyon ve nükleer fisyon birlikte kullanılmasıyla ya da çok daha kuvvetli bir füzyonla elde edilen yüksek yok etme gücüne sahip silahtır. Genel patlayıcılardan farklı olarak çok daha fazla zarar vermek amaçlı kullanılır. Sadece kullanılan bir silah, tüm bir kenti ya da bir ülkeyi canlı, cansız ne varsa tamamen yok edecek güçtedir.

<span class="mw-page-title-main">Nükleer enerji santrali</span> Nükleer reaktör yardımıyla elde edilen enerjiyi dağıtan merkez

Nükleer santral (NPP) veya atom santrali (APS), ısı kaynağının nükleer reaktör olduğu termik santraldir. Termik santrallerde tipik olduğu gibi, ısı, elektrik üreten jeneratöre bağlı buhar türbinini çalıştıran buhar üretmek için kullanılır. Eylül 2023 itibarıyla Uluslararası Atom Enerjisi Kurumu, dünya çapında 32 ülkede faaliyette olan 410 nükleer santral ve inşa halinde olan 57 nükleer santral olduğunu bildirdi.

Toryum; sembolü Th, atom numarası 90 olan zayıf radyoaktivite gösteren, metalik, kimyasal bir elementtir. Toryum havaya maruz kaldığında kararır ve toryum dioksit oluşturur; orta derecede yumuşak, işlenebilir ve yüksek bir erime noktasına sahiptir. Toryum, kimyasına +4 oksidasyon durumunun hakim olduğu elektropozitif bir aktinittir; oldukça reaktiftir ve ince bir şekilde bölündüğünde havada tutuşabilir.

<span class="mw-page-title-main">Radyoaktif atık</span> İstenmeyen veya kullanılamayan radyoaktif maddeler

Radyoaktif atıklar, serbestleştirme sınırlarının üzerinde aktivite konsantrasyonu içeren ve bir daha kullanılması düşünülmeyen nükleer ve radyoaktif maddeler ile radyoaktif madde bulaşmış ya da radyoaktif olmuş yapı, sistem, bileşen ve malzemelerdir.

Zenginleştirilmiş uranyum, içeriğindeki Uranyum-235 (kim. sembol 235U) oranı belirli yöntemlerle doğal seviyelerin üzerine çıkartılmış uranyum karışımıdır. Doğada bulunan toplam uranyum elementinin %99.284'ü Uranyum-238 (kim. sembol 238U) izotopundan oluşur. Zincirleme fisyon gerçekleştirme kabiliyeti bulunan tek uranyum izotopu olan Uranyum-235'in tüm uranyum rezervleri içerisindeki payı yalnızca %0.72'dir. Bu yüzden nükleer yakıt amaçlı olarak kullanılabilmesi için 235U izotopunun uranyum karışımı içerisindeki oranı arttırılmalıdır.

<span class="mw-page-title-main">Manhattan Projesi</span> ilk atom bombasının üretilmesini içeren bir araştırma ve geliştirme projesi

Manhattan Projesi, II. Dünya Savaşı sırasında ilk nükleer silahların üretimini gerçekleştirmek için yürütülmüş bir araştırma ve geliştirme projesiydi. Proje, Amerika Birleşik Devletleri başta olmak üzere Birleşik Krallık ve Kanada ile iş birliği içinde gerçekleştirildi. 1942'den 1946'ya kadar ABD Ordusu Mühendisler Birliği'nden Tümgeneral Leslie Groves'un projenin yöneticiliğini yaptı. Nükleer fizikçi Robert Oppenheimer da bombaları tasarlayan Los Alamos Laboratuvarı'nın yöneticisiydi. Projenin ismi, ilk karargah Manhattan'da olduğu için Manhattan Bölgesi olarak belirlendi; bu ad yavaş yavaş projenin resmi kod adı olan "Development of Substitute Materials"ın yerini aldı. Proje daha sonra İngilizlerin nükleer silah geliştirme projesi olan Tube Alloys'u da bünyesine kattı ve programı Office of Scientific Research and Development'den devraldı. Manhattan Projesi, en yoğun döneminde yaklaşık 130.000 kişiye istihdam sağladı ve yaklaşık 2 milyar ABD dolarına mal oldu. Bunun yüzde 80'inden fazlası fisil malzemeyi üreten tesisleri inşa etmek ve işletmek içindi. Araştırmalar ve bombanın üretimi, Amerika Birleşik Devletleri, Birleşik Krallık ve Kanada'daki otuzdan fazla tesiste gerçekleştirildi.

Nükleer dönüşüm, bir kimyasal element ya da bir izotopun birbirine dönüşmesidir. Her element atomlarındaki proton sayılarıyla tanımlanırlar. Başka bir deyişle, atom çekirdeği içindeki proton ya da nötron sayısında değişim gerçekleştiğinde nükleer dönüşüm meydana gelir.

IV. Nesil III. Nesil reaktörlerin halefi olarak tasarlanan nükleer reaktör tasarımlarıdır. Birinci nesil sistemlerin çoğu kullanımdan kaldırıldığı için dünya çapında faaliyette olan reaktörlerin çoğu ikinci ve 3 nesil sistemlerdir. Generation IV International Forum, IV. nesil reaktörlerin gelişimini koordine eden uluslararası bir organizasyondur. V. Nesil reaktörler tamamen teoriktir ve henüz uygulanabilir olarak görülmemektedir.

<span class="mw-page-title-main">Sıvı florür toryum reaktörü</span>

Sıvı florür toryum reaktörü, bir tür erimiş tuz reaktörüdür. LFTR, yakıt için florür esaslı, erimiş, sıvı tuzlu toryum yakıt çevrimini kullanır.

<span class="mw-page-title-main">Lityum florür</span> kimyasal bileşik

Lityum florür LiF formülüne sahip inorganik bileşik. Renksiz bir katıdır, kristal boyutu küçüldükçe beyaz renge geçiş görülür. Kokusuz olmasına rağmen tuzlu-acı bir tada sahiptir. Sodyum klorüre benzer yapıdadır fakat suda daha az çözünür. Esas olarak erimiş tuz yapısında kullanılır. LiF'nin elementlerinden oluşumu ikinci en yüksek reaktant kütlesi başına enerjiyi verir, birinci BeO'dur.

<span class="mw-page-title-main">Hanford Sahası</span>

Hanford Sahası, Amerika Birleşik Devletleri'nin Washington eyaletindeki Columbia Nehri üzerinde federal hükûmeti tarafından işletilen, çoğunlukla hizmet dışı bir nükleer üretim kompleksidir. 1943'te, Washington'da Hanford'ta Manhattan Projesi'nin bir parçası olarak kurulan saha, dünyanın ilk tam ölçekli plütonyum üretim reaktörü olan B Reaktörü'ne ev sahipliği yapıyordu. Tesiste üretilen plütonyum Trinity bölgesinde test edilen ilk nükleer bomba ve Nagasaki'ye atılan Fat Man'de kullanıldı.

Çevrede aktinitler, dünya ortamındaki aktinitlerin kaynakları, çevresel davranışları ve etkileri ile ilgilidir. Çevresel radyoaktivite yalnızca aktinitlerle sınırlı değildir; radon ve radyum gibi aktinit olmayanlar da dikkat çekicidir. Tüm aktinitler radyoaktif olsa da, yer kabuğunda uranyum ve toryum gibi birçok aktinit vardır. Bu mineraller, karbon tarihleme ve çoğu dedektör için, X-ışınları ve daha fazlası gibi birçok yönden faydalıdır.

<span class="mw-page-title-main">Shippingport Atom Enerjisi Santrali</span>

Shippingport Atom Enerjisi Santrali dünyanın yalnızca barış zamanı kullanımlarına ayrılmış ilk tam ölçekli atom elektrik santraliydi. Amerika Birleşik Devletleri, Pensilvanya, Beaver County'deki Ohio Nehri üzerindeki günümüz Beaver Valley Nükleer Üretim İstasyonunun yakınında, yaklaşık 40 km (40 km) uzaklıkta bulunmaktaydı.

<span class="mw-page-title-main">Toryum bazlı nükleer enerji</span>

Toryum bazlı nükleer enerji üretimi, verimli öncül element toryumdan üretilen izotop uranyum-233'ün nükleer bölünmesiyle beslenir. Bir toryum yakıt çevrimi, toryum bolluğu, üstün fiziksel ve nükleer yakıt özellikleri ve azaltılmış nükleer atık üretimi dahiluranyum yakıt çevrimine göre çeşitli potansiyel avantajlar sunabilir. Toryum yakıtının bir avantajı, düşük silahlanma potansiyelidir; büyük ölçüde toryum reaktörlerinde tüketilen uranyum-233/ 232 ve plütonyum-238 izotoplarını silah haline getirmek zordur.

Toryum kaynakları, düşük karbonlu enerji için potansiyel bir kaynaktır. Toryumun çeşitli reaktör tasarımlarında bir nükleer yakıt işlevi gördüğü kanıtlanmıştır. Yerkabuğunda uranyumdan daha fazla miktarda bulunur. Toryum kaynakları, uranyum örneğinde olduğu gibi daha yüksek bir güvenle tahmin edilmedi ve değerlendirilmedi. Şu anda sınırlı keşifler ve tarihsel verilere dayalı olarak dünya çapında yaklaşık 6 milyon ton toryum tahmin edilmektedir.

2023 itibarıyla, Finlandiya'da çalışır durumda olan hepsi Baltık Denizi kıyılarında bulunan iki santralde bulunan beş nükleer reaktörü bulunmaktadır. Nükleer enerji, 2020'de ülkenin elektrik üretiminin yaklaşık %34'ünü sağladı. Finlandiya'daki ilk araştırma nükleer reaktörü 1962'de, ilk ticari reaktör ise 1977'de işletmeye alındı. Beşinci reaktör Nisan 2023'te faaliyete geçti.

<span class="mw-page-title-main">II. Dünya Savaşı sırasında teknoloji</span>

Teknoloji, İkinci Dünya Savaşı'nda önemli bir rol oynadı. Savaş sırasında kullanılan teknolojilerin bazıları 1920'ler ve 1930'ların iki savaş arası yıllarında geliştirildi, çoğu savaş sırasında ihtiyaçlara ve öğrenilen derslere göre geliştirildi, diğerleri ise savaş sona erdiğinde geliştirilmeye başlandı. Pek çok savaşın günlük yaşamımızda kullandığımız teknolojiler üzerinde büyük etkileri oldu ancak İkinci Dünya Savaşı, günümüzde kullanılan teknoloji ve cihazlar üzerinde en büyük etkiyi yarattı. Teknoloji aynı zamanda II. Dünya Savaşı'nın yürütülmesinde tarihteki diğer savaşlardan daha büyük bir rol oynadı ve sonuçlarında kritik bir rol oynadı.

Uranyum tetraklorür, UCl4 formülüne sahip bir uranyum ve klor tuzudur. Higroskopik zeytin yeşili bir katıdır. Uranyum zenginleştirmesinin elektromanyetik izotop ayırma (EMIS) işleminde kullanıldı. Organouranyum kimyasının ana başlangıç malzemelerinden biridir.