İçeriğe atla

Enterkalasyon (kimya)

Enterkalasyon yapısal distorsiyonlara neden olur. Solda, normal DNA ikili sarmalı. Sağda, üç yerde interkalasyon olan bir DNA (kırmızı bölgeler)

Kimyada enterkalasyon bir molekül (veya grubun) iki molekül (veya grubun) arasına tersinir şekilde girmesidir. DNA enterkalasyonu ve grafit enterkalasyonu bunun örneklerindendir.

DNA enterkalasyonu

İki adenin-urasil baz çifti arasına enterkale olmuş bir etidyum bromür molekülü.

Kimyasal bileşikler DNA ile birkaç şekilde etkileşebilir. Moleküller DNA ile kovalent veya elektrostatik olarak veya enterkalasyon yoluyla bağlanabilir.[1] Molekül eğer uygun şekilde ve kimyasal yapıda olursa DNA'daki baz çiftleri arasına girebilirler. Bu moleküller tersinir bağlandıkları için onlara ligand demek uygundur. Ligandlar çoğunlukla çok halkalı, aromatik ve düzlemseldir ve bu yüzden laboratuvarda nükleik asitlerin boyamakta iyi işlev görürler. Üzerlerinde çok çalışılmış olan DNA enterkalatörleri arasında etidyum bromür (EtBr), proflavin, daunomisin, doksorubisin ve talidomit sayılabilir.

Bağlanma

Leonard Lerman ilk defa 1961'de, katyonik, düzlemsel, çokhalkalı aromatik sistemler arasında etkileşimin mekanizması olarak enterkalasyonu önermiştir. Enterkalasyonun bir çalışma biçimi şöyledir: sulu bir çözeltide katyonik enterkalatör, elektrostatik olarak polinayonik olan DNA tarafından çekilir. Enterkalatör iyon, DNA'ya her zaman bağlı durumda olan bir sodyum veya magnezyum katyonu ile yer değiştirir ve DNA'nın dış yüzeyi ile zayıf bir elektrostatik bağ kurar. Ligand, sonra bu hidrofilik konumdan baz çiftleri arasındaki hidrofobik ortamın içine kayabilir. DNA molekülünün çözeltideki moleküllerle çarpışmalardan absorpladığı enerji, baz çiftlerinin kısa süreli olarak açılmalarını sağlar, geçici bir aralanma sırasında enterkalatör oluşan boşluğa girebilir.

Bir enterkalatörün baz çiftleri arasına girebilmesi için DNA'nın kısmen çözülerek baz çiftleri arasında yer açması gerekir. Çözülmenin derecesi enterkalatöre bağlıdır, örneğin etidyum katyonu (sulu çözeltide etidyum bromürün iyonik şekli) DNA'yı 26° burarak açar, buna karşın, proflavin onu 17° bir açıyla burgusunu açar. Bu açılma baz çiftlerinin ayrılmalarına veya bir baz çiftinin öbürüne göreceli olarak "yükselmesine" neden olur, öyle ki DNA'da 0,34 nm (3.4 Å)'lik bir aralık oluşur. Bu açılma DNA molekülünde yerel yapısal değişikliklere neden olur, DNA ikili sarmalının uzaması veya baz çiftlerinin burulması gibi.

Süpersarımla ilişkisi

DNA molekülün pozitif süpersarımlı olması halinde enterkalatörlerin DNA'yı açıp baz çiftleri arasına girmeleri daha zordur, buna karşın negatif süpersarımlı DNA'ya ise bağlanması daha kolaydır. Dairesel plazmitin süpersarım derecesi ona ne kadar miktarda enterkalatör bağlanabileceğini belirler.

Uygulama

Enterkalatör bağlanmasından kaynaklanan DNA'daki yapısal değişim işlevsel değişimlere yol açar. Çoğu zaman, transkripsiyon, DNA ikileşmesi ve DNA tamir işlemleri engellenir, bu yüzden DNA enterkalatörleri etkili mutajenler arasında yer alırlar. Mutajen olmalarından dolayı DNA enterkalatörleri genelde kanserojendir, örneğin aflatoksin B1'in 8,9 ekso ama (endo değil) epoksiti, proflavin veya kuinakrin gibi akridinler veya etidyum bromür.

DNA enterkalatörleri bu nedenle kemoterapide, hızla büyüyen kanser hücrelerinde DNA ikileşmesini engellemekte kullanılır. Bunlara örnek olarak, doksorubisin (adriamisin) ve daunorubisin (Hodgkin lymphomasında kullanılır); ve daktinomisin (Wilm tumörü, Ewing Sarkoması ve rabdomiyosarkoma'da kullanılır) belirtilebilir.

Bir plazmit DNA'sının kesikli mi, kovalent kapalı olduğuna bağlı olarak ona farklı miktarda etidyum bromür bağlanır. Bundan dolayı, laboratuvar uygulamalarında, Etidyum bromür içinde elektroforez veya santrifügasyon teknikleri ile gevşek ve farklı derecede süpersarımlı plazmitleri ayırmak mümkündür.

Notlar

  1. ^ Richards, A.D. & Rodgers, A. (2007). Synthetic metallomolecules as agents for the control of DNA structure. Chem. Soc. Rev. 36 471-483. Link 3 Mart 2007 tarihinde Wayback Machine sitesinde arşivlendi.

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">DNA</span> Canlıların genetik bilgilerini barındıran molekül

Deoksiriboz nükleik asit veya kısaca DNA, tüm organizmaların ve bazı virüslerin canlılık işlevleri ve biyolojik gelişmeleri için gerekli olan genetik talimatları taşıyan bir nükleik asittir. DNA'nın başlıca rolü bilgiyi uzun süre saklamasıdır. Protein ve RNA gibi hücrenin diğer bileşenlerinin inşası için gerekli olan bilgileri içermesinden dolayı DNA; bir kalıp, şablon veya reçeteye benzetilir. Bu genetik bilgileri içeren DNA parçaları gen olarak adlandırılır. Bazı DNA dizilerinin yapısal işlevleri vardır, diğerleri ise bu genetik bilginin ne şekilde kullanılacağının düzenlenmesine yararlar.

<span class="mw-page-title-main">DNA replikasyonu</span> Biyolojik süreç

DNA replikasyonu veya DNA ikileşmesi, tüm organizmalarda meydana gelen ve DNA kopyalayarak kalıtımın temelini oluşturan biyolojik bir süreçtir. Süreç, bir adet çift iplikli DNA molekülüyle başlar ve iki özdeş DNA'nın oluşumuyla son bulur. Orijinal çift iplikli DNA'nın her ipliği, tamamlayıcı ipliğin üretiminde kalıp görevi görür. Hücresel proofreading ve hata kontrol mekanizmaları replikasyonun neredeyse hatasız gerçekleşmesini sağlar.

<span class="mw-page-title-main">İyonik bağ</span> doğrudur

İyonik bağ, zıt yüklü iyonlar arasındaki elektrostatik kuvvetlere dayanan bir kimyasal bağ türüdür.

<span class="mw-page-title-main">Kovalent bağ</span> İki atom arasında elektronun paylaşılması

Kovalent bağ, atomlar arasında elektron çiftleri oluşturmak için elektronların paylaşımını içeren kimyasal bağdır. Bu elektron çiftlerine paylaşılan çiftler veya bağ çiftleri denir. Atomlar arasında elektronları paylaştıklarında çekici ve itici kuvvetlerin kararlı dengesine kovalent bağ denir. Birçok molekül için elektronların paylaşılması her atomun kararlı elektronik gruplaşmasına denk gelen tam değerlik kabuğunun eşdeğerine ulaşmasına olanak tanır.

<span class="mw-page-title-main">Kimyasal bağ</span> atomları birbirine bağlanmasını ve bir arada kalmasını sağlayan kuvvet

Kimyasal bağ, atomların veya iyonların molekülleri, kristalleri ve diğer yapıları oluşturmak üzere birleşmesidir. Bağ, iyonik bağlar'da olduğu gibi zıt yüklü iyonlar arasındaki elektrostatik kuvvetten veya kovalent bağ'larda olduğu gibi elektronların paylaşılmasından veya bu etkilerin bazı kombinasyonlarından kaynaklanabilir. Açıklanan kimyasal bağların farklı mukavemetleri vardır: kovalent, iyonik ve metalik bağlar gibi "güçlü bağlar" veya "birincil bağlar" ve dipol-dipol etkileşimleri, London dağılım kuvveti ve hidrojen bağı gibi "zayıf bağlar" veya "ikincil bağlar" vardır.

<span class="mw-page-title-main">Amin (kimya)</span>

Aminler, amonyaktaki bir veya daha fazla hidrojen atomunun organik radikaller ile değiştirilmesi yöntemiyle türetilmiş organik bileşikler ve fonksiyonel gruplardır. Yapısal olarak aminler amonyağa benzerler, ama bir veya daha fazla hidrojen atomu, alkil veya aril gibi organik sübstitüentlerle yer değiştirmiştir. Bu kuralın önemli bir istisnası RC(O)NR2 tipi bileşiklerdir (C(O) karbonil grubuna karşılık gelir), bunlara amin yerine amid denir. Amidler ve aminlerin yapıları ve özellikleri farklı olduğu için bu ayrım kimyasal olarak önemlidir. Adlandırma açısında biraz akıl karıştırıcı olan bir nokta, bir aminin N-H grubunun N-M (M= metal) ile değişmesi hâlinde buna da amid denmesidir. Örneğin (CH3)2NLi, lityum dimetilamid'dir.

Moleküler biyolojide bir baz çifti, birbirine ters doğrultuda iki DNA veya RNA zinciri üzerinde bulunan, biribirine hidrojen bağları ile bağlanmış iki nükleobazdır. Standart Watson-Crick baz eşleşmesinde, adenin (A), timin (T) ile, guanin de sitozin ile bir baz çifti oluşturur. RNA içinde olan baz çiftlerinde timin'in yerini urasil (U) alır. Watson-Crick tipi olmayan ve alternatif hidrojen bağlarıyla meydana gelmiş baz çiftleri de oluşabilir, özellikle RNA'da; bunlara Hoogsteen baz çiftlerinde de rastlanır.

<span class="mw-page-title-main">Tamamlayıcılık (moleküler biyoloji)</span>

Moleküler biyoloji ve biyokimyada tamamlayıcılık veya komplementerlik, iki molekülün birbiriyle temas ettikleri yüzeylerindeki şekillerin uyumu sayesinde birbirlerine sıkı bir şekilde bağlanarak bir bütün oluşturma özellikleridir. Tamamlayıcılık, nükleik asitler ve birbirine bağlanan protein-ligand ikilileri için kullanılır. Tamamlayıcılık ayrıca, birbirini tamamlayan nükleik asitlerin dizileri için de kullanılır.

<span class="mw-page-title-main">Nükleoit</span> Prokaryotik bir hücre içinde genetik materyal içeren bölge

Nükleoit veya nükleoid, prokaryotların genetik materyalinin bulunduğu, düzenli bir biçime sahip olmayan, hücre içi bölgeleridir.

<span class="mw-page-title-main">DNA süpersarımı</span>

DNA süpersarımı, bir ucu sabitlenmiş bir DNA molekülünün serbest ucunun molekülün uzun ekseni etrafında döndürülmesidir.

DNA yapısı, hem tek iplikli hem çift iplikli DNA'da çeşitli biçimler gösterir. Hücreler için DNA'nın yapısıyla ilişkili olan DNA'nın mekanik yapısı hücreler için önemli bir sorun yaratır. DNA'nın okunması veya ona bağlanmasıyla ilgili her hücresel süreç, onun tanınması, paketlenmesi veya değişime uğratılmasına etki edecek şekilde onun mekanik yapılarını da kullanır ya da değiştirir. DNA 'nın aşırı uzunluğunun, onun sertliğinin ve sarmal yapısının bir sonucu olarak, hücre DNA'sının düzenlenebilmesi için histon gibi yapısal proteinler ve topoizomeraz ve helikaz gibi enzimler evrimleşmiştir. DNA'nın özellikleri onun moleküler yapısı ve dizisi ile yakından ilişkilidir. Özellikle DNA ipliklerini birbirine bağlayan hidrojen bağları ve elektronik etkileşimlerin, her bir iplikteki bağların kuvvetine kıyasla olan zayıflığı, bu ilişkide önemli bir rol oynar.

<span class="mw-page-title-main">İstiflenme</span>

Kimyada istiflenme, genelde aromatik olan moleküllerin atomlar arası etkileşerek deste şeklinde üst üst üste gelmesidir. İstiflenmiş bir sistemin en yaygın bilinen örneği DNA molekülünde birbirini takibeden bazlarda görülür. İstiflenme proteinlerde, non-polar iki halkanın örtüşmesi halinde de meydana gelir. Hangi moleküllerarası kuvvetlerin istiflenmeye neden olduğu hâlen tartışma konusudur.

<span class="mw-page-title-main">Etidyum bromür</span>

Etidyum bromür moleküler biyoloji laboratuvarlarında nükleik asitleri flüoresan işaretlemekte kullanılan bir enterkalasyon ajanıdır. Bu molekül morötesi ışığa maruz kalınca turuncu renkte ışınır, DNA'ya bağlı olması halinde ışığın seviyesi 20-kat daha fazla olur. Jel elektroforezi gibi laboratuvar tekniklerinde DNA görüntülenmesinde etidyum bromürün bu özelliğinden yararlanılır. Bu bileşik, Homidium adı altında, veterinerler tarafından 1950'lerden beri büyükbaş hayvanlarda tripanozomosis tedavisinde kullanılmıştır. Etidyum bromürün kuvvetli bir mutajendir. Bundan dolayı kanserojen ve teratojen olduğu tahmin edilmektedir ama dikkatli bir şekilde test edilmemiştir.

<span class="mw-page-title-main">Aromatiklik</span>

Organik kimyada bazı atom halkalarının yapısı beklenenin üstünde kararlıdır. Doymamış bağlar, yalın elektron çiftleri veya boş orbitallerden oluşan konjüge bir halkanın konjüge olmasından beklenecek kararlılıktan daha yüksek bir kararlılık gösterme özelliğine aromatiklik denir. Aromatiklik, halkasal delokalizasyon ve rezonansın bir belirtisi olarak da düşünülebilir.

<span class="mw-page-title-main">Doksorubisin</span> kimyasal bileşik

Doksorubisin ya da hidroksidaunorubisin, kanser kemoterapisinde kullanılan bir ilaçtır. Bir antrasiklin türevi antibiyotiktir, doğal bir ürün olan daunomisin ile yakından ilişkilidir ve diğer tüm antrasiklinler gibi DNA içine enterkalasyon yapar. Çeşitli kanserlerin tedavisinde kullanılır, bunların arasında hematolojik kanserler, çeşitli karsinoma tipleri ve yumuşak doku sarkomaları sayılabilir.

Moleküller arası kuvvet, komşu parçacıklar arasında etkili çekim veya itme kuvvetidir. Molekülleri bir arada tutan iç kuvvetlere kıyasla daha zayıftır. Örneğin HCI moleküllerinin içinde bulunan kovalent bağ, birbirine yeterince yakın komşu moleküller arasında mevcut olan kuvvetlerden daha güçlüdür.

<span class="mw-page-title-main">Tuz köprüsü (protein ve supramoleküler)</span>

Kimyada, bir tuz köprüsü iki kovalent olmayan etkileşimin bir kombinasyonudur. İyon eşleştirme, kimyada, biyolojik sistemlerde, farklı materyallerde ve iyon çifti kromatografisi gibi birçok uygulamada en önemli kovalent olmayan kuvvetlerden biridir. Proteinlerin entropik olarak elverişsiz katlanmış konformasyonuna kararlılık sağlayan en yaygın faktördür. Kovalent olmayan etkileşimlerin nispeten zayıf etkileşimler olduğu bilinmesine rağmen, küçük stabilize edici etkileşimler bir araya geldiğinde konformer kararlılığına büyük derece bir atkı gerçekleştirebilirler. Sadece proteinlerde değil, tuz köprüleri aynı zamanda supramoleküler kimyada da bulunabilirler.

<span class="mw-page-title-main">Oktahedral moleküler geometri</span>

Kimyada, oktahedral moleküler geometri, bir oktahedronun köşelerini tanımlayan, merkezi bir atom etrafında simetrik olarak düzenlenmiş altı atomlu bileşiklerin veya atom gruplarının veya ligandların şeklini tanımlar. Oktahedronun sekiz yüzü vardır, dolayısıyla octa ön ekini alır. Oktahedron, Platonik katılardan biridir, ancak oktahedral moleküller tipik olarak merkezlerinde bir atom içerir ve ligand atomları arasında bağ yoktur. Mükemmel bir oktahedron Oh nokta grubuna aittir. Oktahedral bileşiklerin örnekleri arasında kükürt hekzaflorür SF6 ve molibden hekzakarbonil Mo (CO)6 gösterilebilir. "Oktahedral" terimi, kimyagerler tarafından, merkezi atoma olan bağların geometrisine odaklanarak ve ligandların kendi aralarındaki farklılıkları dikkate almadan biraz gevşek bir şekilde kullanılır. Örneğin, N-H bağlarının oryantasyonu nedeniyle matematiksel anlamda oktahedral olmayan [Co(NH3)6]3+, oktahedral olarak adlandırılır.

Kimya ve biyokimyada ayrışma, moleküllerin (veya tuzlar veya bileşikler gibi iyonik bileşiklerin) atomlar, iyonlar veya radikaller gibi daha küçük parçacıklara ayrıldığı genel bir süreçtir. Örneğin, bir asit suda çözündüğünde, bir elektronegatif atom ile bir hidrojen atomu arasındaki kovalent bir bağ, bir proton (H+) ve bir negatif iyon veren heterolitik fisyon tarafından kırılır. Ayrışma, birleşme veya rekombinasyonun tersidir.

<span class="mw-page-title-main">Sulu çözelti</span> çözücünün su olduğu çözelti

Sulu çözelti, çözücünün su olduğu bir çözeltidir. Çoğunlukla kimyasal denklemlerde ilgili kimyasal formüle (aq) eklenerek gösterilir. Örneğin, sodyum klorür (NaCl) olarak da bilinen sofra tuzunun sudaki çözeltisi Na+(aq) + Cl-(aq) şeklinde gösterilir. Aqueous kelimesi (aqua'dan gelir) suya ait, su ile ilgili, suya benzer veya suda çözünmüş anlamına gelir. Su mükemmel bir çözücü olduğundan ve aynı zamanda doğal olarak bol bulunduğundan, kimyada her yerde bulunan bir çözücüdür. Deneylerde çözücü olarak sıklıkla su kullanıldığından, çözücü belirtilmediği sürece çözelti kelimesi sulu bir çözeltiyi ifade eder.